A First Course in Machine Learning, Second Edition

Author: Simon Rogers,Mark Girolami

Publisher: CRC Press

ISBN: 1498738567

Category: Business & Economics

Page: 427

View: 8695

"A First Course in Machine Learning by Simon Rogers and Mark Girolami is the best introductory book for ML currently available. It combines rigor and precision with accessibility, starts from a detailed explanation of the basic foundations of Bayesian analysis in the simplest of settings, and goes all the way to the frontiers of the subject such as infinite mixture models, GPs, and MCMC." —Devdatt Dubhashi, Professor, Department of Computer Science and Engineering, Chalmers University, Sweden "This textbook manages to be easier to read than other comparable books in the subject while retaining all the rigorous treatment needed. The new chapters put it at the forefront of the field by covering topics that have become mainstream in machine learning over the last decade." —Daniel Barbara, George Mason University, Fairfax, Virginia, USA "The new edition of A First Course in Machine Learning by Rogers and Girolami is an excellent introduction to the use of statistical methods in machine learning. The book introduces concepts such as mathematical modeling, inference, and prediction, providing ‘just in time’ the essential background on linear algebra, calculus, and probability theory that the reader needs to understand these concepts." —Daniel Ortiz-Arroyo, Associate Professor, Aalborg University Esbjerg, Denmark "I was impressed by how closely the material aligns with the needs of an introductory course on machine learning, which is its greatest strength...Overall, this is a pragmatic and helpful book, which is well-aligned to the needs of an introductory course and one that I will be looking at for my own students in coming months." —David Clifton, University of Oxford, UK "The first edition of this book was already an excellent introductory text on machine learning for an advanced undergraduate or taught masters level course, or indeed for anybody who wants to learn about an interesting and important field of computer science. The additional chapters of advanced material on Gaussian process, MCMC and mixture modeling provide an ideal basis for practical projects, without disturbing the very clear and readable exposition of the basics contained in the first part of the book." —Gavin Cawley, Senior Lecturer, School of Computing Sciences, University of East Anglia, UK "This book could be used for junior/senior undergraduate students or first-year graduate students, as well as individuals who want to explore the field of machine learning...The book introduces not only the concepts but the underlying ideas on algorithm implementation from a critical thinking perspective." —Guangzhi Qu, Oakland University, Rochester, Michigan, USA

Cost-Sensitive Machine Learning

Author: Balaji Krishnapuram,Shipeng Yu,R. Bharat Rao

Publisher: CRC Press

ISBN: 143983928X

Category: Computers

Page: 331

View: 5905

In machine learning applications, practitioners must take into account the cost associated with the algorithm. These costs include: Cost of acquiring training data Cost of data annotation/labeling and cleaning Computational cost for model fitting, validation, and testing Cost of collecting features/attributes for test data Cost of user feedback collection Cost of incorrect prediction/classification Cost-Sensitive Machine Learning is one of the first books to provide an overview of the current research efforts and problems in this area. It discusses real-world applications that incorporate the cost of learning into the modeling process. The first part of the book presents the theoretical underpinnings of cost-sensitive machine learning. It describes well-established machine learning approaches for reducing data acquisition costs during training as well as approaches for reducing costs when systems must make predictions for new samples. The second part covers real-world applications that effectively trade off different types of costs. These applications not only use traditional machine learning approaches, but they also incorporate cutting-edge research that advances beyond the constraining assumptions by analyzing the application needs from first principles. Spurring further research on several open problems, this volume highlights the often implicit assumptions in machine learning techniques that were not fully understood in the past. The book also illustrates the commercial importance of cost-sensitive machine learning through its coverage of the rapid application developments made by leading companies and academic research labs.

Machine Learning

An Algorithmic Perspective, Second Edition

Author: Stephen Marsland

Publisher: CRC Press

ISBN: 1466583339

Category: Computers

Page: 457

View: 4757

A Proven, Hands-On Approach for Students without a Strong Statistical Foundation Since the best-selling first edition was published, there have been several prominent developments in the field of machine learning, including the increasing work on the statistical interpretations of machine learning algorithms. Unfortunately, computer science students without a strong statistical background often find it hard to get started in this area. Remedying this deficiency, Machine Learning: An Algorithmic Perspective, Second Edition helps students understand the algorithms of machine learning. It puts them on a path toward mastering the relevant mathematics and statistics as well as the necessary programming and experimentation. New to the Second Edition Two new chapters on deep belief networks and Gaussian processes Reorganization of the chapters to make a more natural flow of content Revision of the support vector machine material, including a simple implementation for experiments New material on random forests, the perceptron convergence theorem, accuracy methods, and conjugate gradient optimization for the multi-layer perceptron Additional discussions of the Kalman and particle filters Improved code, including better use of naming conventions in Python Suitable for both an introductory one-semester course and more advanced courses, the text strongly encourages students to practice with the code. Each chapter includes detailed examples along with further reading and problems. All of the code used to create the examples is available on the author’s website.

Computational Trust Models and Machine Learning

Author: Xin Liu,Anwitaman Datta,Ee-Peng Lim

Publisher: CRC Press

ISBN: 1482226669

Category: Computers

Page: 232

View: 320

Computational Trust Models and Machine Learning provides a detailed introduction to the concept of trust and its application in various computer science areas, including multi-agent systems, online social networks, and communication systems. Identifying trust modeling challenges that cannot be addressed by traditional approaches, this book: Explains how reputation-based systems are used to determine trust in diverse online communities Describes how machine learning techniques are employed to build robust reputation systems Explores two distinctive approaches to determining credibility of resources—one where the human role is implicit, and one that leverages human input explicitly Shows how decision support can be facilitated by computational trust models Discusses collaborative filtering-based trust aware recommendation systems Defines a framework for translating a trust modeling problem into a learning problem Investigates the objectivity of human feedback, emphasizing the need to filter out outlying opinions Computational Trust Models and Machine Learning effectively demonstrates how novel machine learning techniques can improve the accuracy of trust assessment.

Künstliche Intelligenz

ein moderner Ansatz

Author: Stuart J. Russell,Stuart Russell,Peter Norvig

Publisher: N.A

ISBN: 9783827370891


Page: 1327

View: 4605

Handbook of Natural Language Processing, Second Edition

Author: Nitin Indurkhya,Fred J. Damerau

Publisher: CRC Press

ISBN: 9781420085938

Category: Computers

Page: 704

View: 2577

The Handbook of Natural Language Processing, Second Edition presents practical tools and techniques for implementing natural language processing in computer systems. Along with removing outdated material, this edition updates every chapter and expands the content to include emerging areas, such as sentiment analysis. New to the Second Edition Greater prominence of statistical approaches New applications section Broader multilingual scope to include Asian and European languages, along with English An actively maintained wiki (http://handbookofnlp.cse.unsw.edu.au) that provides online resources, supplementary information, and up-to-date developments Divided into three sections, the book first surveys classical techniques, including both symbolic and empirical approaches. The second section focuses on statistical approaches in natural language processing. In the final section of the book, each chapter describes a particular class of application, from Chinese machine translation to information visualization to ontology construction to biomedical text mining. Fully updated with the latest developments in the field, this comprehensive, modern handbook emphasizes how to implement practical language processing tools in computational systems.

Neuronale Netze selbst programmieren

Ein verständlicher Einstieg mit Python

Author: Tariq Rashid

Publisher: O'Reilly

ISBN: 3960101031

Category: Computers

Page: 232

View: 2619

Neuronale Netze sind Schlüsselelemente des Deep Learning und der Künstlichen Intelligenz, die heute zu Erstaunlichem in der Lage sind. Sie sind Grundlage vieler Anwendungen im Alltag wie beispielsweise Spracherkennung, Gesichtserkennung auf Fotos oder die Umwandlung von Sprache in Text. Dennoch verstehen nur wenige, wie neuronale Netze tatsächlich funktionieren. Dieses Buch nimmt Sie mit auf eine unterhaltsame Reise, die mit ganz einfachen Ideen beginnt und Ihnen Schritt für Schritt zeigt, wie neuronale Netze arbeiten: - Zunächst lernen Sie die mathematischen Konzepte kennen, die den neuronalen Netzen zugrunde liegen. Dafür brauchen Sie keine tieferen Mathematikkenntnisse, denn alle mathematischen Ideen werden behutsam und mit vielen Illustrationen und Beispielen erläutert. Eine Kurzeinführung in die Analysis unterstützt Sie dabei. - Dann geht es in die Praxis: Nach einer Einführung in die populäre und leicht zu lernende Programmiersprache Python bauen Sie allmählich Ihr eigenes neuronales Netz mit Python auf. Sie bringen ihm bei, handgeschriebene Zahlen zu erkennen, bis es eine Performance wie ein professionell entwickeltes Netz erreicht. - Im nächsten Schritt tunen Sie die Leistung Ihres neuronalen Netzes so weit, dass es eine Zahlenerkennung von 98 % erreicht – nur mit einfachen Ideen und simplem Code. Sie testen das Netz mit Ihrer eigenen Handschrift und werfen noch einen Blick in das mysteriöse Innere eines neuronalen Netzes. - Zum Schluss lassen Sie das neuronale Netz auf einem Raspberry Pi Zero laufen. Tariq Rashid erklärt diese schwierige Materie außergewöhnlich klar und verständlich, dadurch werden neuronale Netze für jeden Interessierten zugänglich und praktisch nachvollziehbar.

Intelligent Control Systems with LabVIEWTM

Author: Pedro Ponce-Cruz,Fernando D. Ramírez-Figueroa

Publisher: Springer Science & Business Media

ISBN: 9781848826847

Category: Technology & Engineering

Page: 216

View: 2265

Intelligent Control with LabVIEWTM is a fresh and pragmatic approach to the understanding of a subject often clouded by too much mathematical theory. It exploits the full suite of tools provided by LabVIEWTM, showing the student how to design, develop, analyze, and visualize intelligent control algorithms quickly and simply. Block diagrams are used to follow the progress of an algorithm through the design process and allow seamless integration with hardware systems for rapid deployment in laboratory experiments. This text delivers a thorough grounding in the main tools of intelligent control: fuzzy logic systems; artificial neural networks; neuro-fuzzy systems; evolutionary methods; and predictive methods. Learning and teaching are facilitated by: extensive use of worked examples; end of chapter problems with separate solutions; and provision of intelligent control tools for LabVIEWTM.

Data Classification

Algorithms and Applications

Author: Charu C. Aggarwal

Publisher: CRC Press

ISBN: 1466586753

Category: Business & Economics

Page: 707

View: 6335

Comprehensive Coverage of the Entire Area of Classification Research on the problem of classification tends to be fragmented across such areas as pattern recognition, database, data mining, and machine learning. Addressing the work of these different communities in a unified way, Data Classification: Algorithms and Applications explores the underlying algorithms of classification as well as applications of classification in a variety of problem domains, including text, multimedia, social network, and biological data. This comprehensive book focuses on three primary aspects of data classification: Methods: The book first describes common techniques used for classification, including probabilistic methods, decision trees, rule-based methods, instance-based methods, support vector machine methods, and neural networks. Domains: The book then examines specific methods used for data domains such as multimedia, text, time-series, network, discrete sequence, and uncertain data. It also covers large data sets and data streams due to the recent importance of the big data paradigm. Variations: The book concludes with insight on variations of the classification process. It discusses ensembles, rare-class learning, distance function learning, active learning, visual learning, transfer learning, and semi-supervised learning as well as evaluation aspects of classifiers.

Machine Learning mit Python

Das Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning

Author: Sebastian Raschka

Publisher: MITP-Verlags GmbH & Co. KG

ISBN: 3958454240

Category: Computers

Page: 424

View: 9906

Data Science mit Python

Das Handbuch für den Einsatz von IPython, Jupyter, NumPy, Pandas, Matplotlib und Scikit-Learn

Author: Jake VanderPlas

Publisher: MITP-Verlags GmbH & Co. KG

ISBN: 3958456979

Category: Computers

Page: 552

View: 9555

Die wichtigsten Tools für die Datenanalyse und-bearbeitung im praktischen Einsatz Python effizient für datenintensive Berechnungen einsetzen mit IPython und Jupyter Laden, Speichern und Bearbeiten von Daten und numerischen Arrays mit NumPy und Pandas Visualisierung von Daten mit Matplotlib Python ist für viele die erste Wahl für Data Science, weil eine Vielzahl von Ressourcen und Bibliotheken zum Speichern, Bearbeiten und Auswerten von Daten verfügbar ist. In diesem Buch erläutert der Autor den Einsatz der wichtigsten Tools. Für Datenanalytiker und Wissenschaftler ist dieses umfassende Handbuch von unschätzbarem Wert für jede Art von Berechnung mit Python sowie bei der Erledigung alltäglicher Aufgaben. Dazu gehören das Bearbeiten, Umwandeln und Bereinigen von Daten, die Visualisierung verschiedener Datentypen und die Nutzung von Daten zum Erstellen von Statistiken oder Machine-Learning-Modellen. Dieses Handbuch erläutert die Verwendung der folgenden Tools: ● IPython und Jupyter für datenintensive Berechnungen ● NumPy und Pandas zum effizienten Speichern und Bearbeiten von Daten und Datenarrays in Python ● Matplotlib für vielfältige Möglichkeiten der Visualisierung von Daten ● Scikit-Learn zur effizienten und sauberen Implementierung der wichtigsten und am meisten verbreiteten Algorithmen des Machine Learnings Der Autor zeigt Ihnen, wie Sie die zum Betreiben von Data Science verfügbaren Pakete nutzen, um Daten effektiv zu speichern, zu handhaben und Einblick in diese Daten zu gewinnen. Grundlegende Kenntnisse in Python werden dabei vorausgesetzt. Leserstimme zum Buch: »Wenn Sie Data Science mit Python betreiben möchten, ist dieses Buch ein hervorragender Ausgangspunkt. Ich habe es sehr erfolgreich beim Unterrichten von Informatik- und Statistikstudenten eingesetzt. Jake geht weit über die Grundlagen der Open-Source-Tools hinaus und erläutert die grundlegenden Konzepte, Vorgehensweisen und Abstraktionen in klarer Sprache und mit verständlichen Erklärungen.« – Brian Granger, Physikprofessor, California Polytechnic State University, Mitbegründer des Jupyter-Projekts

Feature Engineering for Machine Learning and Data Analytics

Author: Guozhu Dong,Huan Liu

Publisher: CRC Press

ISBN: 1351721275

Category: Business & Economics

Page: 400

View: 459

Feature engineering plays a vital role in big data analytics. Machine learning and data mining algorithms cannot work without data. Little can be achieved if there are few features to represent the underlying data objects, and the quality of results of those algorithms largely depends on the quality of the available features. Feature Engineering for Machine Learning and Data Analytics provides a comprehensive introduction to feature engineering, including feature generation, feature extraction, feature transformation, feature selection, and feature analysis and evaluation. The book presents key concepts, methods, examples, and applications, as well as chapters on feature engineering for major data types such as texts, images, sequences, time series, graphs, streaming data, software engineering data, Twitter data, and social media data. It also contains generic feature generation approaches, as well as methods for generating tried-and-tested, hand-crafted, domain-specific features. The first chapter defines the concepts of features and feature engineering, offers an overview of the book, and provides pointers to topics not covered in this book. The next six chapters are devoted to feature engineering, including feature generation for specific data types. The subsequent four chapters cover generic approaches for feature engineering, namely feature selection, feature transformation based feature engineering, deep learning based feature engineering, and pattern based feature generation and engineering. The last three chapters discuss feature engineering for social bot detection, software management, and Twitter-based applications respectively. This book can be used as a reference for data analysts, big data scientists, data preprocessing workers, project managers, project developers, prediction modelers, professors, researchers, graduate students, and upper level undergraduate students. It can also be used as the primary text for courses on feature engineering, or as a supplement for courses on machine learning, data mining, and big data analytics.

Artificial Intelligence Frontiers in Statistics

Al and Statistics III

Author: David J. Hand

Publisher: CRC Press

ISBN: 9780412407109

Category: Business & Economics

Page: 432

View: 8642

This book presents a summary of recent work on the interface between artificial intelligence and statistics. It does this through a series of papers by different authors working in different areas of this interface. These papers are a selected and referenced subset of papers presented at the 3rd Interntional Workshop on Artificial Intelligence and Statistics, Florida, January 1991.


Author: Frank Klawonn,Jörg Gebhardt

Publisher: Springer-Verlag

ISBN: 3322867846

Category: Technology & Engineering

Page: 276

View: 3954

Medizinische Statistik

Author: Hans J. Trampisch,Jürgen Windeler

Publisher: Springer-Verlag

ISBN: 364256996X

Category: Mathematics

Page: 376

View: 3624

"Statistiken sind merkwürdige Dinge ...", dies wird so mancher Mediziner denken, wenn er sich mit der Biometrie befaßt. Sei es im Rahmen seiner Ausbildung oder im Zuge wissenschaftlicher oder klinischer Studien, Kenntnisse der Statistik und Mathematik sind unentbehrlich für die tägliche Arbeit des Mediziners. Ziel dieses Lehrbuches ist es, den Mediziner systematisch an biometrische Terminologie und Arbeitsmethoden heranzuführen, um ihn schließlich mit den Grundlagen der Wahrscheinlichkeitsrechung vertraut zu machen. Nach der Lektüre dieses Buches hält der Leser ein Werkzeug in den Händen, das ihm bei der Lösung medizinscher Fragestellungen hilft ebenso wie bei der Beschreibung von Ergebnissen wissenschaftlicher Studien und natürlich bei der Doktorarbeit!

R in a Nutshell

Author: Joseph Adler

Publisher: O'Reilly Germany

ISBN: 3897216507

Category: Computers

Page: 768

View: 993

Wozu sollte man R lernen? Da gibt es viele Gründe: Weil man damit natürlich ganz andere Möglichkeiten hat als mit einer Tabellenkalkulation wie Excel, aber auch mehr Spielraum als mit gängiger Statistiksoftware wie SPSS und SAS. Anders als bei diesen Programmen hat man nämlich direkten Zugriff auf dieselbe, vollwertige Programmiersprache, mit der die fertigen Analyse- und Visualisierungsmethoden realisiert sind – so lassen sich nahtlos eigene Algorithmen integrieren und komplexe Arbeitsabläufe realisieren. Und nicht zuletzt, weil R offen gegenüber beliebigen Datenquellen ist, von der einfachen Textdatei über binäre Fremdformate bis hin zu den ganz großen relationalen Datenbanken. Zudem ist R Open Source und erobert momentan von der universitären Welt aus die professionelle Statistik. R kann viel. Und Sie können viel mit R machen – wenn Sie wissen, wie es geht. Willkommen in der R-Welt: Installieren Sie R und stöbern Sie in Ihrem gut bestückten Werkzeugkasten: Sie haben eine Konsole und eine grafische Benutzeroberfläche, unzählige vordefinierte Analyse- und Visualisierungsoperationen – und Pakete, Pakete, Pakete. Für quasi jeden statistischen Anwendungsbereich können Sie sich aus dem reichen Schatz der R-Community bedienen. Sprechen Sie R! Sie müssen Syntax und Grammatik von R nicht lernen – wie im Auslandsurlaub kommen Sie auch hier gut mit ein paar aufgeschnappten Brocken aus. Aber es lohnt sich: Wenn Sie wissen, was es mit R-Objekten auf sich hat, wie Sie eigene Funktionen schreiben und Ihre eigenen Pakete schnüren, sind Sie bei der Analyse Ihrer Daten noch flexibler und effektiver. Datenanalyse und Statistik in der Praxis: Anhand unzähliger Beispiele aus Medizin, Wirtschaft, Sport und Bioinformatik lernen Sie, wie Sie Daten aufbereiten, mithilfe der Grafikfunktionen des lattice-Pakets darstellen, statistische Tests durchführen und Modelle anpassen. Danach werden Ihnen Ihre Daten nichts mehr verheimlichen.


Verfahren für die Bilderkennung, Klassifizierung und Datenanalyse

Author: Frank Höppner,Rudolf Kruse,Frank Klawonn

Publisher: Springer-Verlag

ISBN: 3322868362

Category: Technology & Engineering

Page: 280

View: 1017

Dieses Buch ist das Standardwerk zu einem neuen Bereich der angewandten Fuzzy-Technologie, der Fuzzy-Clusteranalyse. Diese beinhaltet Verfahren der Mustererkennung zur Gruppierung und Strukturierung von Daten. Dabei werden im Gegensatz zu klassischen Clustering-Techniken die Daten nicht eindeutig zu Klassen zugeordnet, sondern Zugehörigkeitsgrade bestimmt, so daß die Fuzzy-Verfahren robust gegenüber gestörten oder verrauschten Daten sind und fließende Klassenübergänge handhaben können. Dieses Werk gibt eine methodische Einführung in die zahlreichen Fuzzy-Clustering-Algorithmen mit ihren Anwendungen in den Bereichen Datenanalyse, Erzeugung von Regeln für Fuzzy-Regler, Klassifikations- und Approximationsprobleme sowie eine ausführliche Darstellung des Shell-Clustering zur Erkennung von geometrischen Konturen in Bildern.

Python Crashkurs

Eine praktische, projektbasierte Programmiereinführung

Author: Eric Matthes

Publisher: dpunkt.verlag

ISBN: 3960881460

Category: Computers

Page: 622

View: 6637

"Python Crashkurs" ist eine kompakte und gründliche Einführung, die es Ihnen nach kurzer Zeit ermöglicht, Python-Programme zu schreiben, die für Sie Probleme lösen oder Ihnen erlauben, Aufgaben mit dem Computer zu erledigen. In der ersten Hälfte des Buches werden Sie mit grundlegenden Programmierkonzepten wie Listen, Wörterbücher, Klassen und Schleifen vertraut gemacht. Sie erlernen das Schreiben von sauberem und lesbarem Code mit Übungen zu jedem Thema. Sie erfahren auch, wie Sie Ihre Programme interaktiv machen und Ihren Code testen, bevor Sie ihn einem Projekt hinzufügen. Danach werden Sie Ihr neues Wissen in drei komplexen Projekten in die Praxis umsetzen: ein durch "Space Invaders" inspiriertes Arcade-Spiel, eine Datenvisualisierung mit Pythons superpraktischen Bibliotheken und eine einfache Web-App, die Sie online bereitstellen können. Während der Arbeit mit dem "Python Crashkurs" lernen Sie, wie Sie: - leistungsstarke Python-Bibliotheken und Tools richtig einsetzen – einschließlich matplotlib, NumPy und Pygal - 2D-Spiele programmieren, die auf Tastendrücke und Mausklicks reagieren, und die schwieriger werden, je weiter das Spiel fortschreitet - mit Daten arbeiten, um interaktive Visualisierungen zu generieren - Web-Apps erstellen und anpassen können, um diese sicher online zu deployen - mit Fehlern umgehen, die häufig beim Programmieren auftreten Dieses Buch wird Ihnen effektiv helfen, Python zu erlernen und eigene Programme damit zu entwickeln. Warum länger warten? Fangen Sie an!

Verteilte Systeme

Prinzipien und Paradigmen

Author: Andrew S. Tanenbaum,Maarten van Steen

Publisher: N.A

ISBN: 9783827372932

Category: Distributed processing

Page: 761

View: 8294

Data mining

praktische Werkzeuge und Techniken für das maschinelle Lernen

Author: Ian H. Witten,Eibe Frank

Publisher: N.A

ISBN: 9783446215337


Page: 386

View: 502