Advanced Analytics with Spark

Patterns for Learning from Data at Scale

Author: Sandy Ryza

Publisher: "O'Reilly Media, Inc."

ISBN: 1491972920

Category:

Page: N.A

View: 3746

In the second edition of this practical book, four Cloudera data scientists present a set of self-contained patterns for performing large-scale data analysis with Spark. The authors bring Spark, statistical methods, and real-world data sets together to teach you how to approach analytics problems by example. Updated for Spark 2.1, this edition acts as an introduction to these techniques and other best practices in Spark programming. You'll start with an introduction to Spark and its ecosystem, and then dive into patterns that apply common techniques--including classification, clustering, collaborative filtering, and anomaly detection--to fields such as genomics, security, and finance. If you have an entry-level understanding of machine learning and statistics, and you program in Java, Python, or Scala, you'll find the book's patterns useful for working on your own data applications. With this book, you will: Familiarize yourself with the Spark programming model Become comfortable within the Spark ecosystem Learn general approaches in data science Examine complete implementations that analyze large public data sets Discover which machine learning tools make sense for particular problems Acquire code that can be adapted to many uses

Algorithmen für Dummies

Author: John Paul Mueller,Luca Massaron

Publisher: John Wiley & Sons

ISBN: 3527809775

Category: Computers

Page: 320

View: 6033

Wir leben in einer algorithmenbestimmten Welt. Deshalb lohnt es sich zu verstehen, wie Algorithmen arbeiten. Das Buch präsentiert die wichtigsten Anwendungsgebiete für Algorithmen: Optimierung, Sortiervorgänge, Graphentheorie, Textanalyse, Hashfunktionen. Zu jedem Algorithmus werden jeweils Hintergrundwissen und praktische Grundlagen vermittelt sowie Beispiele für aktuelle Anwendungen gegeben. Für interessierte Leser gibt es Umsetzungen in Python, sodass die Algorithmen auch verändert und die Auswirkungen der Veränderungen beobachtet werden können. Dieses Buch richtet sich an Menschen, die an Algorithmen interessiert sind, ohne eine Doktorarbeit zu dem Thema schreiben zu wollen. Wer es gelesen hat, versteht, wie wichtige Algorithmen arbeiten und wie man von dieser Arbeit beispielsweise bei der Entwicklung von Unternehmensstrategien profitieren kann.

Programmieren mit Scala

Author: Dean Wampler,Alex Payne

Publisher: O'Reilly Germany

ISBN: 3897216485

Category: Computers

Page: 480

View: 6698

Sie ist elegant, schlank, modern und flexibel: Die Rede ist von Scala, der neuen Programmiersprache für die Java Virtual Machine (JVM). Sie vereint die Vorzüge funktionaler und objektorientierter Programmierung, ist typsicherer als Java, lässt sich nahtlos in die Java-Welt integrieren – und eine in Scala entwickelte Anwendung benötigt oft nur einen Bruchteil der Codezeilen ihres Java-Pendants. Kein Wunder, dass immer mehr Firmen, deren große, geschäftskritische Anwendungen auf Java basieren, auf Scala umsteigen, um ihre Produktivität und die Skalierbarkeit ihrer Software zu erhöhen. Das wollen Sie auch? Dann lassen Sie sich von den Scala-Profis Dean Wampler und Alex Payne zeigen, wie es geht. Ihre Werkzeugkiste: Schon bevor Sie loslegen, sind Sie weiter, als Sie denken: Sie können Ihre Java-Programme weiter verwenden, Java-Bibliotheken nutzen, Java von Scala aus aufrufen und Scala von Java aus. Auch Ihre bevorzugten Entwicklungswerkzeuge wie NetBeans, IntelliJ IDEA oder Eclipse stehen Ihnen weiter zur Verfügung, dazu Kommandozeilen-Tools, Plugins für Editoren, Werkzeuge von Drittanbietern – und natürlich Ihre Programmiererfahrung. In Programmieren mit Scala erfahren Sie, wie Sie sich all das zunutze machen. Das Hybridmodell: Die Paradigmen "funktional" und "objektorientiert" sind keine Gegensätze, sondern ergänzen sich unter dem Scala-Dach zu einem sehr produktiven Ganzen. Nutzen Sie die Vorteile funktionaler Programmierung, wann immer sich das anbietet – und seien Sie so frei, auf die guten alten Seiteneffekte zu bauen, wenn Sie das für nötig halten. Futter für die Profis: Skalierbare Nebenläufigkeit mit Aktoren, Aufzucht und Pflege von XML mit Scala, Domainspezifische Sprachen, Tipps zum richtigen Anwendungsdesign – das sind nur ein paar der fortgeschrittenen Themen, in die Sie mit den beiden Autoren eintauchen. Danach sind Sie auch Profi im Programmieren mit Scala.

Datenanalyse mit Python

Auswertung von Daten mit Pandas, NumPy und IPython

Author: Wes McKinney

Publisher: O'Reilly

ISBN: 3960102143

Category: Computers

Page: 542

View: 9784

Erfahren Sie alles über das Manipulieren, Bereinigen, Verarbeiten und Aufbereiten von Datensätzen mit Python: Aktualisiert auf Python 3.6, zeigt Ihnen dieses konsequent praxisbezogene Buch anhand konkreter Fallbeispiele, wie Sie eine Vielzahl von typischen Datenanalyse-Problemen effektiv lösen. Gleichzeitig lernen Sie die neuesten Versionen von pandas, NumPy, IPython und Jupyter kennen.Geschrieben von Wes McKinney, dem Begründer des pandas-Projekts, bietet Datenanalyse mit Python einen praktischen Einstieg in die Data-Science-Tools von Python. Das Buch eignet sich sowohl für Datenanalysten, für die Python Neuland ist, als auch für Python-Programmierer, die sich in Data Science und Scientific Computing einarbeiten wollen. Daten und zugehöriges Material des Buchs sind auf GitHub verfügbar.Aus dem Inhalt:Nutzen Sie die IPython-Shell und Jupyter Notebook für das explorative ComputingLernen Sie Grundfunktionen und fortgeschrittene Features von NumPy kennenSetzen Sie die Datenanalyse-Tools der pandasBibliothek einVerwenden Sie flexible Werkzeuge zum Laden, Bereinigen, Transformieren, Zusammenführen und Umformen von DatenErstellen Sie interformative Visualisierungen mit matplotlibWenden Sie die GroupBy-Mechanismen von pandas an, um Datensätzen zurechtzuschneiden, umzugestalten und zusammenzufassenAnalysieren und manipulieren Sie verschiedenste Zeitreihen-DatenFür diese aktualisierte 2. Auflage wurde der gesamte Code an Python 3.6 und die neuesten Versionen der pandas-Bibliothek angepasst. Neu in dieser Auflage: Informationen zu fortgeschrittenen pandas-Tools sowie eine kurze Einführung in statsmodels und scikit-learn.

Big Data in der Praxis

Lösungen mit Hadoop, Spark, HBase und Hive. Daten speichern, aufbereiten, visualisieren. 2. erweiterte Auflage

Author: Jonas Freiknecht,Stefan Papp

Publisher: Carl Hanser Verlag GmbH Co KG

ISBN: 3446456015

Category: Computers

Page: 551

View: 444

Diese komplett überarbeitete Neuauflage bringt Ihnen das Thema Big Data auf sehr praktische Art und Weise nahe. Sie lernen Technologien, Tools und Methoden kennen, entwickeln Beispiel-Lösungen und erfahren, wie Sie bestehende Systeme vorausschauend auf die mit Big Data einhergehenden Herausforderungen vorbereiten. Dazu werden Sie neben den bekannten Apache-Projekten wie Hadoop, Hive und HBase auch einige weniger bekannte Frameworks wie Apache UIMA oder Apache OpenNLP kennenlernen, um gezielt die Verarbeitung unstrukturierter Daten zu lernen. Alle hier verwendeten Software-Komponenten stehen im vollen Umfang kostenlos im Internet zur Verfügung. Gemeinsam mit den Autoren bauen Sie Schritt für Schritt viele kleinere Projekte auf bis hin zu einer fertigen und funktionstüchtigen Implementierung. Ziel des Buches ist es, Sie auf den Effekt und den Mehrwert der neuen Möglichkeiten aufmerksam zu machen, sodass Sie diese konstruktiv in Ihr Unternehmen tragen können und für sich und Ihre Kollegen somit ein Bewusstsein für den Wert Ihrer Daten schaffen Die zweite Auflage ergänzt das Buch um zahlreiche neue Themen wie Apache Spark, Apache Kafka und weitere Technologien, die vor allem darauf abzielen, Antwortzeiten kurz zu halten und so ein interaktives Arbeiten zu ermöglichen. Ebenso werden die für Firmen so wichtigen Themen Data Governance und Sicherheit behandelt. Im Internet: 18 fertige Beispiel-Projekte auf Basis von Hadoop, HBase, Hive und D3.js plus Videotutorials

Big Data

Die Revolution, die unser Leben verändern wird

Author: Viktor Mayer-Schönberger,Viktor; Cukier Mayer-Schönberger

Publisher: Redline Wirtschaft

ISBN: 3864144590

Category: Political Science

Page: 288

View: 3072

Ob Kaufverhalten, Grippewellen oder welche Farbe am ehesten verrät, ob ein Gebrauchtwagen in einem guten Zustand ist – noch nie gab es eine solche Menge an Daten und noch nie bot sich die Chance, durch Recherche und Kombination in der Daten¬flut blitzschnell Zusammenhänge zu entschlüsseln. Big Data bedeutet nichts weniger als eine Revolution für Gesellschaft, Wirtschaft und Politik. Es wird die Weise, wie wir über Gesundheit, Erziehung, Innovation und vieles mehr denken, völlig umkrempeln. Und Vorhersagen möglich machen, die bisher undenkbar waren. Die Experten Viktor Mayer-Schönberger und Kenneth Cukier beschreiben in ihrem Buch, was Big Data ist, welche Möglichkeiten sich eröffnen, vor welchen Umwälzungen wir alle stehen – und verschweigen auch die dunkle Seite wie das Ausspähen von persönlichen Daten und den drohenden Verlust der Privatsphäre nicht.

Statistik-Workshop für Programmierer

Author: Allen B. Downey

Publisher: O'Reilly Germany

ISBN: 3868993436

Category: Computers

Page: 160

View: 4029

Wenn Sie programmieren können, beherrschen Sie bereits Techniken, um aus Daten Wissen zu extrahieren. Diese kompakte Einführung in die Statistik zeigt Ihnen, wie Sie rechnergestützt, anstatt auf mathematischem Weg Datenanalysen mit Python durchführen können. Praktischer Programmier-Workshop statt grauer Theorie: Das Buch führt Sie anhand eines durchgängigen Fallbeispiels durch eine vollständige Datenanalyse -- von der Datensammlung über die Berechnung statistischer Kennwerte und Identifikation von Mustern bis hin zum Testen statistischer Hypothesen. Gleichzeitig werden Sie mit statistischen Verteilungen, den Regeln der Wahrscheinlichkeitsrechnung, Visualisierungsmöglichkeiten und vielen anderen Arbeitstechniken und Konzepten vertraut gemacht. Statistik-Konzepte zum Ausprobieren: Entwickeln Sie über das Schreiben und Testen von Code ein Verständnis für die Grundlagen von Wahrscheinlichkeitsrechnung und Statistik: Überprüfen Sie das Verhalten statistischer Merkmale durch Zufallsexperimente, zum Beispiel indem Sie Stichproben aus unterschiedlichen Verteilungen ziehen. Nutzen Sie Simulationen, um Konzepte zu verstehen, die auf mathematischem Weg nur schwer zugänglich sind. Lernen Sie etwas über Themen, die in Einführungen üblicherweise nicht vermittelt werden, beispielsweise über die Bayessche Schätzung. Nutzen Sie Python zur Bereinigung und Aufbereitung von Rohdaten aus nahezu beliebigen Quellen. Beantworten Sie mit den Mitteln der Inferenzstatistik Fragestellungen zu realen Daten.

Data Science mit Python

Das Handbuch für den Einsatz von IPython, Jupyter, NumPy, Pandas, Matplotlib und Scikit-Learn

Author: Jake VanderPlas

Publisher: MITP-Verlags GmbH & Co. KG

ISBN: 3958456979

Category: Computers

Page: 552

View: 9090

Die wichtigsten Tools für die Datenanalyse und-bearbeitung im praktischen Einsatz Python effizient für datenintensive Berechnungen einsetzen mit IPython und Jupyter Laden, Speichern und Bearbeiten von Daten und numerischen Arrays mit NumPy und Pandas Visualisierung von Daten mit Matplotlib Python ist für viele die erste Wahl für Data Science, weil eine Vielzahl von Ressourcen und Bibliotheken zum Speichern, Bearbeiten und Auswerten von Daten verfügbar ist. In diesem Buch erläutert der Autor den Einsatz der wichtigsten Tools. Für Datenanalytiker und Wissenschaftler ist dieses umfassende Handbuch von unschätzbarem Wert für jede Art von Berechnung mit Python sowie bei der Erledigung alltäglicher Aufgaben. Dazu gehören das Bearbeiten, Umwandeln und Bereinigen von Daten, die Visualisierung verschiedener Datentypen und die Nutzung von Daten zum Erstellen von Statistiken oder Machine-Learning-Modellen. Dieses Handbuch erläutert die Verwendung der folgenden Tools: ● IPython und Jupyter für datenintensive Berechnungen ● NumPy und Pandas zum effizienten Speichern und Bearbeiten von Daten und Datenarrays in Python ● Matplotlib für vielfältige Möglichkeiten der Visualisierung von Daten ● Scikit-Learn zur effizienten und sauberen Implementierung der wichtigsten und am meisten verbreiteten Algorithmen des Machine Learnings Der Autor zeigt Ihnen, wie Sie die zum Betreiben von Data Science verfügbaren Pakete nutzen, um Daten effektiv zu speichern, zu handhaben und Einblick in diese Daten zu gewinnen. Grundlegende Kenntnisse in Python werden dabei vorausgesetzt. Leserstimme zum Buch: »Wenn Sie Data Science mit Python betreiben möchten, ist dieses Buch ein hervorragender Ausgangspunkt. Ich habe es sehr erfolgreich beim Unterrichten von Informatik- und Statistikstudenten eingesetzt. Jake geht weit über die Grundlagen der Open-Source-Tools hinaus und erläutert die grundlegenden Konzepte, Vorgehensweisen und Abstraktionen in klarer Sprache und mit verständlichen Erklärungen.« – Brian Granger, Physikprofessor, California Polytechnic State University, Mitbegründer des Jupyter-Projekts

Handbook of Research on Big Data Storage and Visualization Techniques

Author: Segall, Richard S.,Cook, Jeffrey S.

Publisher: IGI Global

ISBN: 1522531432

Category: Computers

Page: 917

View: 3555

The digital age has presented an exponential growth in the amount of data available to individuals looking to draw conclusions based on given or collected information across industries. Challenges associated with the analysis, security, sharing, storage, and visualization of large and complex data sets continue to plague data scientists and analysts alike as traditional data processing applications struggle to adequately manage big data. The Handbook of Research on Big Data Storage and Visualization Techniques is a critical scholarly resource that explores big data analytics and technologies and their role in developing a broad understanding of issues pertaining to the use of big data in multidisciplinary fields. Featuring coverage on a broad range of topics, such as architecture patterns, programing systems, and computational energy, this publication is geared towards professionals, researchers, and students seeking current research and application topics on the subject.

big data @ work

Chancen erkennen, Risiken verstehen

Author: Thomas H. Davenport

Publisher: Vahlen

ISBN: 3800648156

Category: Fiction

Page: 214

View: 6077

Big Data in Unternehmen. Dieses neue Buch gibt Managern ein umfassendes Verständnis dafür, welche Bedeutung Big Data für Unternehmen zukünftig haben wird und wie Big Data tatsächlich genutzt werden kann. Am Ende jedes Kapitels aktivieren Fragen, selbst nach Lösungen für eine erfolgreiche Implementierung und Nutzung von Big Data im eigenen Unternehmen zu suchen. Die Schwerpunkte - Warum Big Data für Sie und Ihr Unternehmen wichtig ist - Wie Big Data Ihre Arbeit, Ihr Unternehmen und Ihre Branche verändern - - wird - Entwicklung einer Big Data-Strategie - Der menschliche Aspekt von Big Data - Technologien für Big Data - Wie Sie erfolgreich mit Big Data arbeiten - Was Sie von Start-ups und Online-Unternehmen lernen können - Was Sie von großen Unternehmen lernen können: Big Data und Analytics 3.0 Der Experte Thomas H. Davenport ist Professor für Informationstechnologie und -management am Babson College und Forschungswissenschaftler am MIT Center for Digital Business. Zudem ist er Mitbegründer und Forschungsdirektor am International Institute for Analytics und Senior Berater von Deloitte Analytics.

Scala:Applied Machine Learning

Author: Pascal Bugnion,Patrick R. Nicolas,Alex Kozlov

Publisher: Packt Publishing Ltd

ISBN: 178712455X

Category: Computers

Page: 1265

View: 5026

Leverage the power of Scala and master the art of building, improving, and validating scalable machine learning and AI applications using Scala's most advanced and finest features About This Book Build functional, type-safe routines to interact with relational and NoSQL databases with the help of the tutorials and examples provided Leverage your expertise in Scala programming to create and customize your own scalable machine learning algorithms Experiment with different techniques; evaluate their benefits and limitations using real-world financial applications Get to know the best practices to incorporate new Big Data machine learning in your data-driven enterprise and gain future scalability and maintainability Who This Book Is For This Learning Path is for engineers and scientists who are familiar with Scala and want to learn how to create, validate, and apply machine learning algorithms. It will also benefit software developers with a background in Scala programming who want to apply machine learning. What You Will Learn Create Scala web applications that couple with JavaScript libraries such as D3 to create compelling interactive visualizations Deploy scalable parallel applications using Apache Spark, loading data from HDFS or Hive Solve big data problems with Scala parallel collections, Akka actors, and Apache Spark clusters Apply key learning strategies to perform technical analysis of financial markets Understand the principles of supervised and unsupervised learning in machine learning Work with unstructured data and serialize it using Kryo, Protobuf, Avro, and AvroParquet Construct reliable and robust data pipelines and manage data in a data-driven enterprise Implement scalable model monitoring and alerts with Scala In Detail This Learning Path aims to put the entire world of machine learning with Scala in front of you. Scala for Data Science, the first module in this course, is a tutorial guide that provides tutorials on some of the most common Scala libraries for data science, allowing you to quickly get up to speed building data science and data engineering solutions. The second course, Scala for Machine Learning guides you through the process of building AI applications with diagrams, formal mathematical notation, source code snippets, and useful tips. A review of the Akka framework and Apache Spark clusters concludes the tutorial. The next module, Mastering Scala Machine Learning, is the final step in this course. It will take your knowledge to next level and help you use the knowledge to build advanced applications such as social media mining, intelligent news portals, and more. After a quick refresher on functional programming concepts using REPL, you will see some practical examples of setting up the development environment and tinkering with data. We will then explore working with Spark and MLlib using k-means and decision trees. By the end of this course, you will be a master at Scala machine learning and have enough expertise to be able to build complex machine learning projects using Scala. This Learning Path combines some of the best that Packt has to offer in one complete, curated package. It includes content from the following Packt products: Scala for Data Science, Pascal Bugnion Scala for Machine Learning, Patrick Nicolas Mastering Scala Machine Learning, Alex Kozlov Style and approach A tutorial with complete examples, this course will give you the tools to start building useful data engineering and data science solutions straightaway. This course provides practical examples from the field on how to correctly tackle data analysis problems, particularly for modern Big Data datasets.

Die Berechnung der Zukunft

Warum die meisten Prognosen falsch sind und manche trotzdem zutreffen - Der New York Times Bestseller

Author: Nate Silver

Publisher: Heyne Verlag

ISBN: 3641112702

Category: Business & Economics

Page: 656

View: 5749

Zuverlässige Vorhersagen sind doch möglich! Nate Silver ist der heimliche Gewinner der amerikanischen Präsidentschaftswahlen 2012: ein begnadeter Statistiker, als »Prognose-Popstar« und »Wundernerd« weltberühmt geworden. Er hat die Wahlergebnisse aller 50 amerikanischen Bundesstaaten absolut exakt vorausgesagt – doch damit nicht genug: Jetzt zeigt Nate Silver, wie seine Prognosen in Zukunft Terroranschläge, Umweltkatastrophen und Finanzkrisen verhindern sollen. Gelingt ihm die Abschaffung des Zufalls? Warum werden Wettervorhersagen immer besser, während die Terrorattacken vom 11.09.2001 niemand kommen sah? Warum erkennen Ökonomen eine globale Finanzkrise nicht einmal dann, wenn diese bereits begonnen hat? Das Problem ist nicht der Mangel an Informationen, sondern dass wir die verfügbaren Daten nicht richtig deuten. Zuverlässige Prognosen aber würden uns helfen, Zufälle und Ungewissheiten abzuwehren und unser Schicksal selbst zu bestimmen. Nate Silver zeigt, dass und wie das geht. Erstmals wendet er seine Wahrscheinlichkeitsrechnung nicht nur auf Wahlprognosen an, sondern auf die großen Probleme unserer Zeit: die Finanzmärkte, Ratingagenturen, Epidemien, Erdbeben, den Klimawandel, den Terrorismus. In all diesen Fällen gibt es zahlreiche Prognosen von Experten, die er überprüft – und erklärt, warum sie meist falsch sind. Gleichzeitig schildert er, wie es gelingen kann, im Rauschen der Daten die wesentlichen Informationen herauszufiltern. Ein unterhaltsamer und spannender Augenöffner!

Programmieren lernen mit Python

Author: Allen B. Downey

Publisher: O'Reilly Germany

ISBN: 3955618072

Category: Computers

Page: 320

View: 2572

Python ist eine moderne, interpretierte, interaktive und objektorientierte Skriptsprache, vielseitig einsetzbar und sehr beliebt. Mit mathematischen Vorkenntnissen ist Python leicht erlernbar und daher die ideale Sprache für den Einstieg in die Welt des Programmierens. Das Buch führt Sie Schritt für Schritt durch die Sprache, beginnend mit grundlegenden Programmierkonzepten, über Funktionen, Syntax und Semantik, Rekursion und Datenstrukturen bis hin zum objektorientierten Design. Zur aktualisierten Auflage Diese Auflage behandelt Python 3, geht dabei aber auch auf Unterschiede zu Python 2 ein. Außerdem wurde das Buch um die Themen Unicode, List und Dictionary Comprehensions, den Mengen-Typ Set, die String-Format-Methode und print als Funktion ergänzt. Jenseits reiner Theorie Jedes Kapitel enthält passende Übungen und Fallstudien, kurze Verständnistests und kleinere Projekte, an denen Sie die neu erlernten Programmierkonzepte gleich ausprobieren und festigen können. Auf diese Weise können Sie das Gelernte direkt anwenden und die jeweiligen Programmierkonzepte nachvollziehen. Lernen Sie Debugging-Techniken kennen Am Ende jedes Kapitels finden Sie einen Abschnitt zum Thema Debugging, der Techniken zum Aufspüren und Vermeiden von Bugs sowie Warnungen vor entsprechenden Stolpersteinen in Python enthält.

The Second Machine Age

Wie die nächste digitale Revolution unser aller Leben verändern wird

Author: Erik Brynjolfsson,Andrew McAfee

Publisher: Plassen Verlag

ISBN: 3864702224

Category: Political Science

Page: 368

View: 1021

Computer sind mittlerweile so intelligent geworden, dass die nächste industrielle Revolution unmittelbar bevorsteht. Wer profitiert, wer verliert? Antworten auf diese Fragen bietet das neue Buch der Technologie-Profis Erik Brynjolfsson und Andrew McAfee. Seit Jahren arbeiten wir mit Computern - und Computer für uns. Mittlerweile sind die Maschinen so intelligent geworden, dass sie zu Leistungen fähig sind, die vor Kurzem noch undenkbar waren: Sie fahren Auto, sie schreiben eigene Texte - und sie besiegen Großmeister im Schach. Dieser Entwicklungssprung ist nur der Anfang. In ihrem neuen Buch zeigen zwei renommierte Professoren, welch atemberaubende Entwicklungen uns noch bevorstehen: Die zweite industrielle Revolution kommt! Welche Auswirkungen wird das haben? Welche Chancen winken, welche Risiken drohen? Was geschieht dabei mit den Menschen, was mit der Umwelt? Und was werden Gesellschaft und Politik tun, um die Auswirkungen dieser "neuen digitalen Intelligenz" für alle bestmöglich zu gestalten? Dieses Buch nimmt Sie mit auf eine Reise in eine Zukunft, die schon längst begonnen hat.

Einführung in SQL

Author: Alan Beaulieu

Publisher: O'Reilly Germany

ISBN: 3897219387

Category: Computers

Page: 353

View: 9189

SQL kann Spaß machen! Es ist ein erhebendes Gefühl, eine verworrene Datenmanipulation oder einen komplizierten Report mit einer einzigen Anweisung zu bewältigen und so einen Haufen Arbeit vom Tisch zu bekommen. Einführung in SQL bietet einen frischen Blick auf die Sprache, deren Grundlagen jeder Entwickler beherrschen muss. Die aktualisierte 2. Auflage deckt die Versionen MySQL 6.0, Oracle 11g und Microsoft SQL Server 2008 ab. Außerdem enthält sie neue Kapitel zu Views und Metadaten. SQL-Basics - in null Komma nichts durchstarten: Mit diesem leicht verständlichen Tutorial können Sie SQL systematisch und gründlich lernen, ohne sich zu langweilen. Es führt Sie rasch durch die Basics der Sprache und vermittelt darüber hinaus eine Reihe von häufig genutzten fortgeschrittenen Features. Mehr aus SQL-Befehlen herausholen: Alan Beaulieu will mehr vermitteln als die simple Anwendung von SQL-Befehlen: Er legt Wert auf ein tiefes Verständnis der SQL-Features und behandelt daher auch den Umgang mit Mengen, Abfragen innerhalb von Abfragen oder die überaus nützlichen eingebauten Funktionen von SQL. Die MySQL-Beispieldatenbank: Es gibt zwar viele Datenbankprodukte auf dem Markt, aber welches wäre zum Erlernen von SQL besser geeignet als MySQL, das weit verbreitete relationale Datenbanksystem? Der Autor hilft Ihnen, eine MySQL-Datenbank anzulegen, und nutzt diese für die Beispiele in diesem Buch. Übungen mit Lösungen: Zu jedem Thema finden Sie im Buch gut durchdachte Übungen mit Lösungen. So ist sichergestellt, dass Sie schnell Erfolgserlebnisse haben und das Gelernte auch praktisch umsetzen können.

Data mining

praktische Werkzeuge und Techniken für das maschinelle Lernen

Author: Ian H. Witten,Eibe Frank

Publisher: N.A

ISBN: 9783446215337

Category:

Page: 386

View: 322

Clean Code - Refactoring, Patterns, Testen und Techniken für sauberen Code

Deutsche Ausgabe

Author: Robert C. Martin

Publisher: MITP-Verlags GmbH & Co. KG

ISBN: 3826696387

Category: Computers

Page: 480

View: 4997

h2> Kommentare, Formatierung, Strukturierung Fehler-Handling und Unit-Tests Zahlreiche Fallstudien, Best Practices, Heuristiken und Code Smells Clean Code - Refactoring, Patterns, Testen und Techniken für sauberen Code Aus dem Inhalt: Lernen Sie, guten Code von schlechtem zu unterscheiden Sauberen Code schreiben und schlechten Code in guten umwandeln Aussagekräftige Namen sowie gute Funktionen, Objekte und Klassen erstellen Code so formatieren, strukturieren und kommentieren, dass er bestmöglich lesbar ist Ein vollständiges Fehler-Handling implementieren, ohne die Logik des Codes zu verschleiern Unit-Tests schreiben und Ihren Code testgesteuert entwickeln Selbst schlechter Code kann funktionieren. Aber wenn der Code nicht sauber ist, kann er ein Entwicklungsunternehmen in die Knie zwingen. Jedes Jahr gehen unzählige Stunden und beträchtliche Ressourcen verloren, weil Code schlecht geschrieben ist. Aber das muss nicht sein. Mit Clean Code präsentiert Ihnen der bekannte Software-Experte Robert C. Martin ein revolutionäres Paradigma, mit dem er Ihnen aufzeigt, wie Sie guten Code schreiben und schlechten Code überarbeiten. Zusammen mit seinen Kollegen von Object Mentor destilliert er die besten Praktiken der agilen Entwicklung von sauberem Code zu einem einzigartigen Buch. So können Sie sich die Erfahrungswerte der Meister der Software-Entwicklung aneignen, die aus Ihnen einen besseren Programmierer machen werden – anhand konkreter Fallstudien, die im Buch detailliert durchgearbeitet werden. Sie werden in diesem Buch sehr viel Code lesen. Und Sie werden aufgefordert, darüber nachzudenken, was an diesem Code richtig und falsch ist. Noch wichtiger: Sie werden herausgefordert, Ihre professionellen Werte und Ihre Einstellung zu Ihrem Beruf zu überprüfen. Clean Code besteht aus drei Teilen:Der erste Teil beschreibt die Prinzipien, Patterns und Techniken, die zum Schreiben von sauberem Code benötigt werden. Der zweite Teil besteht aus mehreren, zunehmend komplexeren Fallstudien. An jeder Fallstudie wird aufgezeigt, wie Code gesäubert wird – wie eine mit Problemen behaftete Code-Basis in eine solide und effiziente Form umgewandelt wird. Der dritte Teil enthält den Ertrag und den Lohn der praktischen Arbeit: ein umfangreiches Kapitel mit Best Practices, Heuristiken und Code Smells, die bei der Erstellung der Fallstudien zusammengetragen wurden. Das Ergebnis ist eine Wissensbasis, die beschreibt, wie wir denken, wenn wir Code schreiben, lesen und säubern. Dieses Buch ist ein Muss für alle Entwickler, Software-Ingenieure, Projektmanager, Team-Leiter oder Systemanalytiker, die daran interessiert sind, besseren Code zu produzieren. Über den Autor: Robert C. »Uncle Bob« Martin entwickelt seit 1970 professionell Software. Seit 1990 arbeitet er international als Software-Berater. Er ist Gründer und Vorsitzender von Object Mentor, Inc., einem Team erfahrener Berater, die Kunden auf der ganzen Welt bei der Programmierung in und mit C++, Java, C#, Ruby, OO, Design Patterns, UML sowie Agilen Methoden und eXtreme Programming helfen.

Die Federalist papers

Author: Alexander Hamilton,James Madison,John Jay

Publisher: C.H.Beck

ISBN: 9783406547546

Category: Constitutional history

Page: 583

View: 5820