An Introduction to Algebraic Topology

Author: Joseph J. Rotman

Publisher: Springer Science & Business Media

ISBN: 1461245761

Category: Mathematics

Page: 437

View: 3289

A clear exposition, with exercises, of the basic ideas of algebraic topology. Suitable for a two-semester course at the beginning graduate level, it assumes a knowledge of point set topology and basic algebra. Although categories and functors are introduced early in the text, excessive generality is avoided, and the author explains the geometric or analytic origins of abstract concepts as they are introduced.

Homology Theory

An Introduction to Algebraic Topology

Author: James W. Vick

Publisher: Springer Science & Business Media

ISBN: 1461208815

Category: Mathematics

Page: 245

View: 3236

This introduction to some basic ideas in algebraic topology is devoted to the foundations and applications of homology theory. After the essentials of singular homology and some important applications are given, successive topics covered include attaching spaces, finite CW complexes, cohomology products, manifolds, Poincare duality, and fixed point theory. This second edition includes a chapter on covering spaces and many new exercises.

Algebraic Topology: An Introduction

Author: William S. Massey

Publisher: Springer

ISBN: 0387902716

Category: Mathematics

Page: 292

View: 862

William S. Massey Professor Massey, born in Illinois in 1920, received his bachelor's degree from the University of Chicago and then served for four years in the U.S. Navy during World War II. After the War he received his Ph.D. from Princeton University and spent two additional years there as a post-doctoral research assistant. He then taught for ten years on the faculty of Brown University, and moved to his present position at Yale in 1960. He is the author of numerous research articles on algebraic topology and related topics. This book developed from lecture notes of courses taught to Yale undergraduate and graduate students over a period of several years.

Algebraic Topology

A First Course

Author: William Fulton

Publisher: Springer Science & Business Media

ISBN: 1461241804

Category: Mathematics

Page: 430

View: 9217

To the Teacher. This book is designed to introduce a student to some of the important ideas of algebraic topology by emphasizing the re lations of these ideas with other areas of mathematics. Rather than choosing one point of view of modem topology (homotopy theory, simplicial complexes, singular theory, axiomatic homology, differ ential topology, etc.), we concentrate our attention on concrete prob lems in low dimensions, introducing only as much algebraic machin ery as necessary for the problems we meet. This makes it possible to see a wider variety of important features of the subject than is usual in a beginning text. The book is designed for students of mathematics or science who are not aiming to become practicing algebraic topol ogists-without, we hope, discouraging budding topologists. We also feel that this approach is in better harmony with the historical devel opment of the subject. What would we like a student to know after a first course in to pology (assuming we reject the answer: half of what one would like the student to know after a second course in topology)? Our answers to this have guided the choice of material, which includes: under standing the relation between homology and integration, first on plane domains, later on Riemann surfaces and in higher dimensions; wind ing numbers and degrees of mappings, fixed-point theorems; appli cations such as the Jordan curve theorem, invariance of domain; in dices of vector fields and Euler characteristics; fundamental groups

An Introduction to the Theory of Groups

Author: Joseph J. Rotman

Publisher: Springer Science & Business Media

ISBN: 1461241766

Category: Mathematics

Page: 517

View: 1184

Anyone who has studied abstract algebra and linear algebra as an undergraduate can understand this book. The first six chapters provide material for a first course, while the rest of the book covers more advanced topics. This revised edition retains the clarity of presentation that was the hallmark of the previous editions. From the reviews: "Rotman has given us a very readable and valuable text, and has shown us many beautiful vistas along his chosen route." --MATHEMATICAL REVIEWS

Introduction to Topological Manifolds

Author: John Lee

Publisher: Springer Science & Business Media

ISBN: 1441979409

Category: Mathematics

Page: 433

View: 5616

This book is an introduction to manifolds at the beginning graduate level, and accessible to any student who has completed a solid undergraduate degree in mathematics. It contains the essential topological ideas that are needed for the further study of manifolds, particularly in the context of differential geometry, algebraic topology, and related fields. Although this second edition has the same basic structure as the first edition, it has been extensively revised and clarified; not a single page has been left untouched. The major changes include a new introduction to CW complexes (replacing most of the material on simplicial complexes in Chapter 5); expanded treatments of manifolds with boundary, local compactness, group actions, and proper maps; and a new section on paracompactness.

Topology and Geometry

Author: Glen E. Bredon

Publisher: Springer Science & Business Media

ISBN: 1475768486

Category: Mathematics

Page: 131

View: 4148

This book offers an introductory course in algebraic topology. Starting with general topology, it discusses differentiable manifolds, cohomology, products and duality, the fundamental group, homology theory, and homotopy theory. From the reviews: "An interesting and original graduate text in topology and geometry...a good lecturer can use this text to create a fine course....A beginning graduate student can use this text to learn a great deal of mathematics."—-MATHEMATICAL REVIEWS

Homology Theory

An Introduction to Algebraic Topology

Author: P. J. Hilton,S. Wylie

Publisher: CUP Archive

ISBN: 9780521094221

Category: Mathematics

Page: 484

View: 2104

This account of algebraic topology is complete in itself, assuming no previous knowledge of the subject. It is used as a textbook for students in the final year of an undergraduate course or on graduate courses and as a handbook for mathematicians in other branches who want some knowledge of the subject.

An Introduction to Knot Theory

Author: W.B.Raymond Lickorish

Publisher: Springer Science & Business Media

ISBN: 146120691X

Category: Mathematics

Page: 204

View: 8962

A selection of topics which graduate students have found to be a successful introduction to the field, employing three distinct techniques: geometric topology manoeuvres, combinatorics, and algebraic topology. Each topic is developed until significant results are achieved and each chapter ends with exercises and brief accounts of the latest research. What may reasonably be referred to as knot theory has expanded enormously over the last decade and, while the author describes important discoveries throughout the twentieth century, the latest discoveries such as quantum invariants of 3-manifolds as well as generalisations and applications of the Jones polynomial are also included, presented in an easily intelligible style. Readers are assumed to have knowledge of the basic ideas of the fundamental group and simple homology theory, although explanations throughout the text are numerous and well-done. Written by an internationally known expert in the field, this will appeal to graduate students, mathematicians and physicists with a mathematical background wishing to gain new insights in this area.

Differential Forms in Algebraic Topology

Author: Raoul Bott,Loring W. Tu

Publisher: Springer Science & Business Media

ISBN: 1475739516

Category: Mathematics

Page: 338

View: 4479

Developed from a first-year graduate course in algebraic topology, this text is an informal introduction to some of the main ideas of contemporary homotopy and cohomology theory. The materials are structured around four core areas: de Rham theory, the Cech-de Rham complex, spectral sequences, and characteristic classes. By using the de Rham theory of differential forms as a prototype of cohomology, the machineries of algebraic topology are made easier to assimilate. With its stress on concreteness, motivation, and readability, this book is equally suitable for self-study and as a one-semester course in topology.

Basic Concepts of Algebraic Topology

Author: F.H. Croom

Publisher: Springer Science & Business Media

ISBN: 1468494759

Category: Mathematics

Page: 180

View: 1845

This text is intended as a one semester introduction to algebraic topology at the undergraduate and beginning graduate levels. Basically, it covers simplicial homology theory, the fundamental group, covering spaces, the higher homotopy groups and introductory singular homology theory. The text follows a broad historical outline and uses the proofs of the discoverers of the important theorems when this is consistent with the elementary level of the course. This method of presentation is intended to reduce the abstract nature of algebraic topology to a level that is palatable for the beginning student and to provide motivation and cohesion that are often lacking in abstact treatments. The text emphasizes the geometric approach to algebraic topology and attempts to show the importance of topological concepts by applying them to problems of geometry and analysis. The prerequisites for this course are calculus at the sophomore level, a one semester introduction to the theory of groups, a one semester introduc tion to point-set topology and some familiarity with vector spaces. Outlines of the prerequisite material can be found in the appendices at the end of the text. It is suggested that the reader not spend time initially working on the appendices, but rather that he read from the beginning of the text, referring to the appendices as his memory needs refreshing. The text is designed for use by college juniors of normal intelligence and does not require "mathematical maturity" beyond the junior level.


An Introduction to the Point-set and Algebraic Areas

Author: Donald W. Kahn

Publisher: Courier Corporation

ISBN: 9780486686097

Category: Mathematics

Page: 217

View: 2531

Comprehensive coverage of elementary general topology as well as algebraic topology, specifically 2-manifolds, covering spaces and fundamental groups. Problems, with selected solutions. Bibliography. 1975 edition.

Fundamentals of Algebraic Topology

Author: Steven Weintraub

Publisher: Springer

ISBN: 1493918443

Category: Mathematics

Page: 163

View: 1335

This rapid and concise presentation of the essential ideas and results of algebraic topology follows the axiomatic foundations pioneered by Eilenberg and Steenrod. The approach of the book is pragmatic: while most proofs are given, those that are particularly long or technical are omitted, and results are stated in a form that emphasizes practical use over maximal generality. Moreover, to better reveal the logical structure of the subject, the separate roles of algebra and topology are illuminated. Assuming a background in point-set topology, Fundamentals of Algebraic Topology covers the canon of a first-year graduate course in algebraic topology: the fundamental group and covering spaces, homology and cohomology, CW complexes and manifolds, and a short introduction to homotopy theory. Readers wishing to deepen their knowledge of algebraic topology beyond the fundamentals are guided by a short but carefully annotated bibliography.

A Basic Course in Algebraic Topology

Author: W.S. Massey

Publisher: Springer Science & Business Media

ISBN: 9780387974309

Category: Mathematics

Page: 428

View: 8215

This book provides a systematic treatment of the classification of compact 2-manifolds, the fundamental group, covering spaces, singular homology theory, and singular cohomology theory. It avoids all unnecessary definitions, terminology, and technical machinery. Wherever possible, the book emphasizes the geometric motivation behind the various concepts.

Riemannian Manifolds

An Introduction to Curvature

Author: John M. Lee

Publisher: Springer Science & Business Media

ISBN: 0387227261

Category: Mathematics

Page: 226

View: 9842

This text focuses on developing an intimate acquaintance with the geometric meaning of curvature and thereby introduces and demonstrates all the main technical tools needed for a more advanced course on Riemannian manifolds. It covers proving the four most fundamental theorems relating curvature and topology: the Gauss-Bonnet Theorem, the Cartan-Hadamard Theorem, Bonnet’s Theorem, and a special case of the Cartan-Ambrose-Hicks Theorem.

Algebraic Topology

Author: Tammo tom Dieck

Publisher: European Mathematical Society

ISBN: 9783037190487

Category: Mathematics

Page: 567

View: 6344

This book is written as a textbook on algebraic topology. Prerequisites are standard point set topology (as recalled in the first chapter), elementary algebraic notions (modules, tensor product), and some terminology from category theory. The aim of the book is to introduce advanced undergraduate and graduate (masters) students to basic tools, concepts and results of algebraic topology. Sufficient background material from geometry and algebra is included.

Algebraic Topology

An Intuitive Approach

Author: Hajime Satō

Publisher: American Mathematical Soc.

ISBN: 9780821810460

Category: Mathematics

Page: 118

View: 6484

The single most difficult thing one faces when one begins to learn a new branch of mathematics is to get a feel for the mathematical sense of the subject. The purpose of this book is to help the aspiring reader acquire this essential common sense about algebraic topology in a short period of time. To this end, Sato leads the reader through simple but meaningful examples in concrete terms. Moreover, results are not discussed in their greatest possible generality, but in terms of the simplest and most essential cases. In response to suggestions from readers of the original edition of this book, Sato has added an appendix of useful definitions and results on sets, general topology, groups and such. He has also provided references. Topics covered include fundamental notions such as homeomorphisms, homotopy equivalence, fundamental groups and higher homotopy groups, homology and cohomology, fiber bundles, spectral sequences and characteristic classes. Objects and examples considered in the text include the torus, the Mobius strip, the Klein bottle, closed surfaces, cell complexes and vector bundles.

Differential Topology

Author: Morris W. Hirsch

Publisher: Springer Science & Business Media

ISBN: 146849449X

Category: Mathematics

Page: 222

View: 6756

"A very valuable book. In little over 200 pages, it presents a well-organized and surprisingly comprehensive treatment of most of the basic material in differential topology, as far as is accessible without the methods of algebraic topology....There is an abundance of exercises, which supply many beautiful examples and much interesting additional information, and help the reader to become thoroughly familiar with the material of the main text." —MATHEMATICAL REVIEWS

Lectures on Algebraic Topology

Author: Albrecht Dold

Publisher: Springer Science & Business Media

ISBN: 3662007568

Category: Mathematics

Page: 380

View: 7627

This is essentially a book on singular homology and cohomology with special emphasis on products and manifolds. It does not treat homotopy theory except for some basic notions, some examples, and some applica tions of (co-)homology to homotopy. Nor does it deal with general(-ised) homology, but many formulations and arguments on singular homology are so chosen that they also apply to general homology. Because of these absences I have also omitted spectral sequences, their main applications in topology being to homotopy and general (co-)homology theory. Cech cohomology is treated in a simple ad hoc fashion for locally compact subsets of manifolds; a short systematic treatment for arbitrary spaces, emphasizing the universal property of the Cech-procedure, is contained in an appendix. The book grew out of a one-year's course on algebraic topology, and it can serve as a text for such a course. For a shorter basic course, say of half a year, one might use chapters II, III, IV (§§ 1-4), V (§§ 1-5, 7, 8), VI (§§ 3, 7, 9, 11, 12). As prerequisites the student should know the elementary parts of general topology, abelian group theory, and the language of categories - although our chapter I provides a little help with the latter two. For pedagogical reasons, I have treated integral homology only up to chapter VI; if a reader or teacher prefers to have general coefficients from the beginning he needs to make only minor adaptions.