An Introduction to Particle Accelerators

Author: Edmund Wilson,Edward J. N. Wilson

Publisher: Clarendon Press

ISBN: 9780198508298

Category: Science

Page: 252

View: 4435

This book is a very simple introduction for those who would like to learn about the particle accelerators or 'atom-smashers' used in hospitals, industry and large research institutes where physicists probe deep into the nature of matter itself. The reader with a basic knowledge of mathematics and physics will discover a wide spectrum of technologies.

An Introduction to the Physics of Particle Accelerators

Author: Mario Conte,William W. MacKay

Publisher: World Scientific

ISBN: 9812779604

Category: Science

Page: 374

View: 8630

"This book provides a concise and coherent introduction to the physics of particle accelerators, with attention being paid to the design of an accelerator for use as an experimental tool. In the second edition, new chapters on spin dynamics of polarized beams as well as instrumentation and measurements are included, with a discussion of frequency spectra and Schottky signals. The additional material also covers quadratic Lie groups and integration highlighting new techniques using Cayley transforms, detailed estimation of collider luminosities, and new problems."--BOOK JACKET.

An Introduction to the Physics of High Energy Accelerators

Author: D. A. Edwards,M. J. Syphers

Publisher: John Wiley & Sons

ISBN: 3527617280

Category: Science

Page: 304

View: 9809

The first half deals with the motion of a single particle under the influence of electronic and magnetic fields. The basic language of linear and circular accelerators is developed. The principle of phase stability is introduced along with phase oscillations in linear accelerators and synchrotrons. Presents a treatment of betatron oscillations followed by an excursion into nonlinear dynamics and its application to accelerators. The second half discusses intensity dependent effects, particularly space charge and coherent instabilities. Includes tables of parameters for a selection of accelerators which are used in the numerous problems provided at the end of each chapter.

The Physics of Particle Accelerators

An Introduction

Author: Klaus Wille

Publisher: Clarendon Press

ISBN: 9780198505495

Category: Science

Page: 315

View: 1642

This text provides the reader with a comprehensive understanding of the key ideas behind the physics of particle accelerators. Supported by a clear mathematical treatment and a range of calculations which develop a genuine feeling for the subject, it is a thorough introduction to the many aspects of accelerator physics.

A Practical Introduction to Beam Physics and Particle Accelerators

Author: Santiago Bernal

Publisher: Morgan & Claypool Publishers

ISBN: 1681741407

Category: Science

Page: 120

View: 4839

This book is a brief exposition of the principles of beam physics and particle accelerators with emphasis on numerical examples employing readily available computer tools. Avoiding detailed derivations, we invite the reader to use general high-end languages such as Mathcad and Matlab, as well as specialized particle accelerator codes (e.g. MAD, WinAgile, Elegant, and others) to explore the principles presented. This approach allows the student to readily identify relevant design parameters and their scaling and easily adapt computer input files to other related situations.

Particle Accelerator Physics I

Vol. 1-

Author: Helmut Wiedemann

Publisher: Springer Science & Business Media

ISBN: 9783540646716

Category:

Page: N.A

View: 7866

Introduction to Accelerator Dynamics

Author: Stephen Peggs,Todd Satogata

Publisher: Cambridge University Press

ISBN: 1107132843

Category: Science

Page: 220

View: 6884

How does a particle accelerator work? The most direct and intuitive answer focuses on the dynamics of single particles as they travel through an accelerator. Particle accelerators are becoming ever more sophisticated and diverse, from the Large Hadron Collider (LHC) at CERN to multi-MW linear accelerators and small medical synchrotrons. This self-contained book presents a pedagogical account of the important field of accelerator physics, which has grown rapidly since its inception in the latter half of the last century. Key topics covered include the physics of particle acceleration, collision and beam dynamics, and the engineering considerations intrinsic to the effective construction and operation of particle accelerators. By drawing direct connections between accelerator technology and the parallel development of computational capability, this book offers an accessible introduction to this exciting field at a level appropriate for advanced undergraduate and graduate students, accelerator scientists, and engineers.

Particle Accelerators, Colliders, and the Story of High Energy Physics

Charming the Cosmic Snake

Author: Raghavan Jayakumar

Publisher: Springer Science & Business Media

ISBN: 9783642220647

Category: Science

Page: 224

View: 3149

This book takes the readers through the science behind particle accelerators, colliders and detectors: the physics principles that each stage of the development of particle accelerators helped to reveal, and the particles they helped to discover. The book culminates with a description of the Large Hadron Collider, one of the world’s largest and most complex machines operating in a 27-km circumference tunnel near Geneva. The book provides the material honestly without misrepresenting the science for the sake of excitement or glossing over difficult notions. The principles behind each type of accelerator is made accessible to the undergraduate student and even to a lay reader with cartoons, illustrations and metaphors. Simultaneously, the book also caters to different levels of reader’s background and provides additional materials for the more interested or diligent reader.

Accelerator Physics

Example Problems with Solutions

Author: William W MacKay,Mario Conte

Publisher: World Scientific Publishing Company

ISBN: 9813100931

Category: Science

Page: 288

View: 5619

This manual provides solutions to the problems given in the second edition of the textbook entitled An Introduction to the Physics of Particle Accelerators. Simple-to-solve problems play a useful role as a first check of the student's level of knowledge whereas difficult problems will test the student's capacity of finding the bearing of the problems in an interdisciplinary environment. The solutions to several problems will require strong engagement of the student, not only in accelerator physics but also in more general physical subjects, such as the profound approach to classical mechanics (discussed in Chapter 3) and the subtleties of spin dynamics (Chapter 13).

Principles of Charged Particle Acceleration

Author: Stanley Humphries

Publisher: Courier Corporation

ISBN: 0486320634

Category: Science

Page: 592

View: 6374

This authoritative text offers a unified, programmed summary of the principles underlying all charged particle accelerators — it also doubles as a reference collection of equations and material essential to accelerator development and beam applications. The only text that covers linear induction accelerators, the work contains straightforward expositions of basic principles rather than detailed theories of specialized areas. 1986 edition.

Introduction to Particle and Astroparticle Physics

Multimessenger Astronomy and its Particle Physics Foundations

Author: Alessandro De Angelis,Mário Pimenta

Publisher: Springer

ISBN: 3319781812

Category: Science

Page: 733

View: 1377

This book introduces particle physics, astrophysics and cosmology. Starting from an experimental perspective, it provides a unified view of these fields that reflects the very rapid advances being made. This new edition has a number of improvements and has been updated to describe the recent discovery of gravitational waves and astrophysical neutrinos, which started the new era of multimessenger astrophysics; it also includes new results on the Higgs particle. Astroparticle and particle physics share a common problem: we still don’t have a description of the main ingredients of the Universe from the point of view of its energy budget. Addressing these fascinating issues, and offering a balanced introduction to particle and astroparticle physics that requires only a basic understanding of quantum and classical physics, this book is a valuable resource, particularly for advanced undergraduate students and for those embarking on graduate courses. It includes exercises that offer readers practical insights. It can be used equally well as a self-study book, a reference and a textbook.

Particle Physics: A Very Short Introduction

Author: Frank Close

Publisher: Oxford University Press

ISBN: 0192804340

Category: Science

Page: 148

View: 8503

Particle Physics provides a compelling introduction to the fundamental constituents of the universe. Beginning with a guide to what matter is made of and how it evolved, the author goes on to describe the techniques used to study it. He discusses quarks, electrons, and the neutrino, exotic matter, and antimatter. He also investigates the forces of nature, accelerators and detectors, and the future of particle physics.

Beam Dynamics in High Energy Particle Accelerators

Author: Andrzej Wolski

Publisher: World Scientific

ISBN: 1783262796

Category: Science

Page: 608

View: 3641

Particle accelerators are essential tools for scientific research in fields as diverse as high energy physics, materials science and structural biology. They are also widely used in industry and medicine. Producing the optimum design and achieving the best performance for an accelerator depends on a detailed understanding of many (often complex and sometimes subtle) effects that determine the properties and behavior of the particle beam. Beam Dynamics in High Energy Particle Accelerators provides an introduction to the concepts underlying accelerator beam line design and analysis, taking an approach that emphasizes the elegance of the subject and leads into the development of a range of powerful techniques for understanding and modeling charged particle beams. Contents:Electromagnetism and Classical Mechanics:Electromagnetic Fields in Accelerator ComponentsHamiltonian for a Particle in an Accelerator Beam LineSingle-Particle Linear Dynamics:Linear Transfer Maps for Common ComponentsLinear Optics in Uncoupled Beam LinesCoupled OpticsLinear Imperfections in Storage RingsEffects of Synchrotron RadiationSingle-Particle Nonlinear Dynamics:Examples of Nonlinear Effects in Accelerator Beam LinesRepresentations of Transfer MapsSymplectic IntegratorsMethods for Analysis of Single-Particle DynamicsCollective Effects:Space ChargeScattering EffectsWake Fields, Wake Functions and ImpedanceCoherent Instabilities Readership: Undergraduate students who are looking for an introduction to beam dynamics, and graduate students and researchers in the field. Key Features:Basic ideas are introduced from the start using an approach that leads logically into the development of more advanced concepts and techniques. In particular, linear dynamics is treated consistently using a Hamiltonian formalism, which provides a suitable foundation not only for perturbation theory, but also for more modern techniques based on Lie operators. The use of a consistent approach makes the progress from introductory to advanced material as straightforward as possibleThe treatment of nonlinear dynamics using Lie operators provides a number of powerful techniques for the analysis of accelerator beam lines. Lie operators are generally found only in more advanced and specialized treatments of nonlinear dynamics. Beam Dynamics in High Energy Particle Accelerators provides an accessible introduction to the subject, and illustrates the use of techniques such as Lie transforms and normal form analysis through examples of particular relevance for beam dynamicsAs well as providing a clear description of the important topics in beam dynamics and an explanation of the physical principles, attention is given to techniques of particular importance for computer modeling of beam dynamics. For example, there is a chapter on symplectic integration that gives explicit formulae for methods that are of some importance in accelerator modeling codes, but have not previously been presented in a book of this kindKeywords:Accelerator Physics;Beam Dynamics;Particle AcceleratorsReviews: “This is a recommendable addition to the literature, covering its topics clearly and thoroughly.” CERN Courier

Accelerator Physics

Author: S Y Lee

Publisher: World Scientific Publishing Company

ISBN: 9814405280

Category: Science

Page: 556

View: 696

Research and development of high energy accelerators began in 1911. Since then, milestones achieved are: (1) development of high gradient dc and rf accelerators,(2) achievement of high field magnets with excellent field quality,(3) discovery of transverse and longitudinal beam focusing principles,(4) invention of high power rf sources,(5) improvement of ultra-high vacuum technology,(6) attainment of high brightness (polarized/unpolarized) electron/ionsources,(7) advancement of beam dynamics and beam manipulation schemes, such as beam injection, accumulation, slow and fast extraction, beam damping and beam cooling, instability feedback, laser-beam interaction and harvesting instability for high brilliance coherent photon source. The impacts of the accelerator development are evidenced by the many ground-breaking discoveries in particle and nuclear physics, atomic and molecular physics, condensed matter physics, biology, biomedical physics, nuclear medicine, medical therapy, and industrial processing. This book is intended to be used as a graduate or senior undergraduate textbook in accelerator physics and science. It can be used as preparatory course material in graduate accelerator physics thesis research. The text covers historical accelerator development, transverse betatron motion, synchrotron motion, an introduction to linear accelerators, and synchrotron radiation phenomena in low emittance electron storage rings, introduction to special topics such as the free electron laser and the beam-beam interaction. Attention is paid to derivation of the action-angle variables of the phase space, because the transformation is important for understanding advanced topics such as the collective instability and nonlinear beam dynamics. Each section is followed by exercises, which are designed to reinforce concepts and to solve realistic accelerator design problems. Contents:Introduction:Historical DevelopmentsLayout and Components of AcceleratorsAccelerator ApplicationsTransverse Motion:Hamiltonian for Particle Motion in AcceleratorsLinear Betatron MotionEffect of Linear Magnet ImperfectionsOff-Momentum OrbitChromatic AberrationLinear CouplingNonlinear ResonancesCollective Instability and Landau DampingSynchro-Betatron HamiltonianSynchrotron Motion:Longitudinal Equation of MotionAdiabatic Synchrotron MotionRF Phase and Voltage ModulationsNonadiabatic and Nonlinear Synchrotron MotionBeam Manipulation in Synchrotron Phase SpaceFundamentals of RF SystemsLongitudinal Collective InstabilitiesIntroduction to Linear AcceleratorsPhysics of Electron Storage Rings:Fields of a Moving Charged ParticleRadiation Damping and ExcitationEmittance in Electron Storage RingsSpecial Topics in Beam Physics:Free Electron Laser (FEL)Beam-Beam InteractionClassical Mechanics and Analysis:Hamiltonian DynamicsStochastic Beam DynamicsModel Independent AnalysisNumerical Methods and Physical Constants:Fourier TransformCauchy Theorem and the Dispersion RelationUseful Handy FormulasMaxwell's EquationsPhysical Properties and Constants Readership: Accelerator, high-energy, nuclear, plasma and applied physicists.

Particle Physics in the LHC Era

Author: Giles Barr,Robin Devenish,Roman Walczak,Tony Weidberg

Publisher: Oxford University Press

ISBN: 0191065455

Category: Science

Page: 400

View: 9379

This text gives an introduction to particle physics at a level accessible to advanced undergraduate students. It is based on lectures given to 4th year physics students over a number of years, and reflects the feedback from the students. The aim is to explain the theoretical and experimental basis of the Standard Model (SM) of Particle Physics with the simplest mathematical treatment possible. All the experimental discoveries that led to the understanding of the SM relied on particle detectors and most of them required advanced particle accelerators. A unique feature of this book is that it gives a serious introduction to the fundamental accelerator and detector physics, which is currently only available in advanced graduate textbooks. The mathematical tools that are required such as group theory are covered in one chapter. A modern treatment of the Dirac equation is given in which the free particle Dirac equation is seen as being equivalent to the Lorentz transformation. The idea of generating the SM interactions from fundamental gauge symmetries is explained. The core of the book covers the SM. The tools developed are used to explain its theoretical basis and a clear discussion is given of the critical experimental evidence which underpins it. A thorough account is given of quark flavour and neutrino oscillations based on published experimental results, including some from running experiments. A simple introduction to the Higgs sector of the SM is given. This explains the key idea of how spontaneous symmetry breaking can generate particle masses without violating the underlying gauge symmetry. A key feature of this book is that it gives an accessible explanation of the discovery of the Higgs boson, including the advanced statistical techniques required. The final chapter gives an introduction to LHC physics beyond the standard model and the techniques used in searches for new physics. There is an outline of the shortcomings of the SM and a discussion of possible solutions and future experiments to resolve these outstanding questions. For updates, new results, useful links as well as corrections to errata in this book, please see the book website maintained by the authors: https://pplhcera.physics.ox.ac.uk/

Particle Accelerator Design: Computer Programs

Author: John Colonias

Publisher: Elsevier

ISBN: 0323155979

Category: Science

Page: 320

View: 4275

Particle Accelerator Design: Computer Programs describes some of the most important computer programs applicable to the design of particle accelerators. Computer programs that calculate magnetic and electric fields are considered, along with programs that calculate orbits of particles in a magnetic and/or electric field. Some representative programs useful in the design of linear accelerator-type cavities are also discussed. This book is comprised of six chapters and begins with a review of two-dimensional magnetostatic programs, including TRIM, LINDA, NUTCRACKER, MAREC, GRACY, and COILS. The University of Colorado's magnet program is also examined. The next chapter is devoted to programs capable of solving problems relating to the calculation of electrostatic fields in two-dimensional geometries. The reader is also introduced to programs that perform calculations of three-dimensional linear and nonlinear problems, along with programs that employ matrix formalism and integration of equations of motion. The final chapter looks at programs for linear accelerator-type cavities, including CURE, JESSY, MESSYMESH, and AZTEC. This monograph will be a useful resource for physical scientists, engineers, and computer programmers.

Industrial Accelerators and Their Applications

Author: Robert W Hamm,Marianne E Hamm

Publisher: World Scientific

ISBN: 9814434612

Category:

Page: 436

View: 9813

This unique new book is a comprehensive review of the many current industrial applications of particle accelerators, written by experts in each of these fields. Readers will gain a broad understanding of the principles of these applications, the extent to which they are employed, and the accelerator technology utilized. The book also serves as a thorough introduction to these fields for non-experts and laymen. Due to the increased interest in industrial applications, there is a growing interest among accelerator physicists and many other scientists worldwide in understanding how accelerators are used in various applications. The government agencies that fund scientific research with accelerators are also seeking more information on the many commercial applications that have been or can be developed with the technology developments they are funding. Many industries are also doing more research on how they can improve their products or processes using particle beams Contents: Introduction to the Beam Business (Robert W Hamm and Marianne E Hamm)Ion Implantation for Fabrication of Semiconductor Devices and Materials (Michael I Current)Electron Beam Materials Processing (Donald E Powers)Electron Beam Materials Irradiators (Marshall R Cleland)Accelerator Production of Radionuclides (David J Schlyer and Thomas J Ruth)Industrial Aspects of Ion Beam Analysis (Ragnar Hellborg and Harry J Whitlow)Production and Applications of Neutrons Using Particle Accelerators (David L Chichester)Nondestructive Testing and Inspection Using Electron Linacs (William A Reed)Industrial Use of Synchrotron Radiation: Love at Second Sight (Josef Hormes and Jeffrey Warner) Readership: Physicists, engineers and practitioners in accelerator technology and applications.

Particle Accelerators: From Big Bang Physics to Hadron Therapy

Author: Ugo Amaldi

Publisher: Springer

ISBN: 331908870X

Category: Science

Page: 284

View: 1040

Rather than focusing on the contributions of theoretical physicists to the understanding of the subatomic world and of the beginning of the universe - as most popular science books on particle physics do - this book is different in that, firstly, the main focus is on machine inventors and builders and, secondly, particle accelerators are not only described as discovery tools but also for their contributions to tumour diagnosis and therapy. The characters of well-known (e.g. Ernest Lawrence) and mostly unknown actors (e.g. Nicholas Christofilos) are outlined, including many colourful quotations. The overall picture supports the author’s motto: “Physics is beautiful and useful”. Advance appraisal: “Accelerators go all the way from the unique and gargantuan Large Hadron Collider to thousands of smaller versions in hospitals and industry. Ugo Amaldi has experience across the range. He has worked at CERN and has for many years been driving the application of accelerators in medicine. This is a must-read introduction to this frontier of modern technology, written beautifully by a world expert.” Frank Close, Professor of Physics at Oxford University author of "The Infinity Puzzle" “This book should be read by school teachers and all those interested in the exploration of the microcosm and its relation to cosmology, and in the use of accelerators for medical applications. With a light hand and without formulae the autho r easily explains complicated matters, spicing up the text with amusing historical anecdotes. His reputation as an outstanding scientist in all the fields treated guarantees high standards.” Herwig Schopper, former CERN Director General author of "LEP - The Lord of the Collider Rings at CERN" “This book tells the story of modern physics with an unusual emphasis on the machine-builders who made it all possible, and their machines. Learning to accelerate particles has enabled physicists to probe the subatomic world and gain a deeper understanding of the cosmos. It has also brought numerous benefits to medicine, from the primitive X-ray machines of over a century ago to today's developments in hadron therapy for cancer. Amaldi tells this story in a most fascinating way.” Edward Witten, Professor of Mathematical Physics at the Institute for Advanced Study in Princeton; Fields Medal (1990)

An Introduction to Nuclear Physics

Author: W. N. Cottingham,D. A. Greenwood

Publisher: Cambridge University Press

ISBN: 9780521657334

Category: Science

Page: 271

View: 2669

This clear and concise introduction to nuclear physics provides an excellent basis for a core undergraduate course in this area. The book opens by setting nuclear physics in the context of elementary particle physics and then shows how simple models can provide an understanding of the properties of nuclei, both in their ground states and excited states, and also of the nature of nuclear reactions. The book also includes chapters on nuclear fission, its application in nuclear power reactors, the role of nuclear physics in energy production and nucleosynthesis in stars. This second edition contains several additional topics: muon-catalysed fusion, the nuclear and neutrino physics of supernovae, neutrino mass and neutrino oscillations, and the biological effects of radiation. A knowledge of basic quantum mechanics and special relativity is assumed. Appendices deal with other more specialized topics. Each chapter ends with a set of problems for which outline solutions are provided.

Introduction to Nuclear and Particle Physics

Author: A Das,T Ferbel

Publisher: World Scientific

ISBN: 9814483338

Category: Nuclear physics

Page: 416

View: 5216

' The original edition of Introduction to Nuclear and Particle Physics was used with great success for single-semester courses on nuclear and particle physics offered by American and Canadian universities at the undergraduate level. It was also translated into German, and used overseas. Being less formal but well-written, this book is a good vehicle for learning the more intuitive rather than formal aspects of the subject. It is therefore of value to scientists with a minimal background in quantum mechanics, but is sufficiently substantive to have been recommended for graduate students interested in the fields covered in the text. In the second edition, the material begins with an exceptionally clear development of Rutherford scattering and, in the four following chapters, discusses sundry phenomenological issues concerning nuclear properties and structure, and general applications of radioactivity and of the nuclear force. This is followed by two chapters dealing with interactions of particles in matter, and how these characteristics are used to detect and identify such particles. A chapter on accelerators rounds out the experimental aspects of the field. The final seven chapters deal with elementary-particle phenomena, both before and after the realization of the Standard Model. This is interspersed with discussion of symmetries in classical physics and in the quantum domain, bringing into full focus the issues concerning CP violation, isotopic spin, and other symmetries. The final three chapters are devoted to the Standard Model and to possibly new physics beyond it, emphasizing unification of forces, supersymmetry, and other exciting areas of current research. The book contains several appendices on related subjects, such as special relativity, the nature of symmetry groups, etc. There are also many examples and problems in the text that are of value in gauging the reader's understanding of the material. Contents:Rutherford ScatteringNuclear PhenomenologyNuclear ModelsNuclear RadiationApplications of Nuclear PhysicsEnergy Deposition in MediaParticle DetectionAcceleratorsProperties and Interactions of Elementary ParticlesSymmetriesDiscrete TransformationsNeutral Kaons, Oscillations, and CP ViolationFormulation of the Standard ModelStandard Model and Confrontation with DataBeyond the Standard Model Readership: Advanced undergraduates and researchers in nuclear and particle physics. Keywords:Rutherford Scattering;Nuclear Properties;Nuclear Structure;Elementary Particles;Sub-Structure of Particles;Particle Detectors;Interactions in Matter;The Standard Model;Symmetries of Nature;Theories of Nuclear and Particle Structure;Radioactivity;SupersymmetryReviews: “The book by Das and Ferbel is particularly suited as a basis for a one-semester course on both subjects since it contains a very concise introduction to those topics and I like very much the outline and contents of this book.” Kay Konigsmann Universität Freiburg, Germany “The book provides an introduction to the subject very well suited for the introductory course for physics majors. Presentation is very clear and nicely balances the issues of nuclear and particle physics, exposes both theoretical ideas and modern experimental methods. Presentation is also very economic and one can cover most of the book in a one-semester course. In the second edition, the authors updated the contents to reflect the very recent developments in the theory and experiment. They managed to do it without substantial increase of the size of the book. I used the first edition several times to teach the course ‘Introduction to Subatomic Physics’ and I am looking forward to use this new edition to teach the course next year.” Professor Mark Strikman Pennsylvania State University, USA “This book can be recommended to those who find elementary particle physics of absorbing interest.” Contemporary Physics '