An Introduction to Proof Through Real Analysis

Author: Daniel J. Madden,Jason A. Aubrey

Publisher: John Wiley & Sons

ISBN: 1119314720

Category: Education

Page: 448

View: 2573

An engaging and accessible introduction to mathematical proof incorporating ideas from real analysis A mathematical proof is an inferential argument for a mathematical statement. Since the time of the ancient Greek mathematicians, the proof has been a cornerstone of the science of mathematics. The goal of this book is to help students learn to follow and understand the function and structure of mathematical proof and to produce proofs of their own. An Introduction to Proof through Real Analysis is based on course material developed and refined over thirty years by Professor Daniel J. Madden and was designed to function as a complete text for both first proofs and first analysis courses. Written in an engaging and accessible narrative style, this book systematically covers the basic techniques of proof writing, beginning with real numbers and progressing to logic, set theory, topology, and continuity. The book proceeds from natural numbers to rational numbers in a familiar way, and justifies the need for a rigorous definition of real numbers. The mathematical climax of the story it tells is the Intermediate Value Theorem, which justifies the notion that the real numbers are sufficient for solving all geometric problems. • Concentrates solely on designing proofs by placing instruction on proof writing on top of discussions of specific mathematical subjects • Departs from traditional guides to proofs by incorporating elements of both real analysis and algebraic representation • Written in an engaging narrative style to tell the story of proof and its meaning, function, and construction • Uses a particular mathematical idea as the focus of each type of proof presented • Developed from material that has been class-tested and fine-tuned over thirty years in university introductory courses An Introduction to Proof through Real Analysis is the ideal introductory text to proofs for second and third-year undergraduate mathematics students, especially those who have completed a calculus sequence, students learning real analysis for the first time, and those learning proofs for the first time. Daniel J. Madden, PhD, is an Associate Professor of Mathematics at The University of Arizona, Tucson, Arizona, USA. He has taught a junior level course introducing students to the idea of a rigorous proof based on real analysis almost every semester since 1990. Dr. Madden is the winner of the 2015 Southwest Section of the Mathematical Association of America Distinguished Teacher Award. Jason A. Aubrey, PhD, is Assistant Professor of Mathematics and Director, Mathematics Center of the University of Arizona.

Exploring the Infinite

An Introduction to Proof and Analysis

Author: Jennifer Brooks

Publisher: CRC Press

ISBN: 1498704522

Category: Mathematics

Page: 300

View: 1593

Exploring the Infinite addresses the trend toward a combined transition course and introduction to analysis course. It guides the reader through the processes of abstraction and log- ical argumentation, to make the transition from student of mathematics to practitioner of mathematics. This requires more than knowledge of the definitions of mathematical structures, elementary logic, and standard proof techniques. The student focused on only these will develop little more than the ability to identify a number of proof templates and to apply them in predictable ways to standard problems. This book aims to do something more; it aims to help readers learn to explore mathematical situations, to make conjectures, and only then to apply methods of proof. Practitioners of mathematics must do all of these things. The chapters of this text are divided into two parts. Part I serves as an introduction to proof and abstract mathematics and aims to prepare the reader for advanced course work in all areas of mathematics. It thus includes all the standard material from a transition to proof" course. Part II constitutes an introduction to the basic concepts of analysis, including limits of sequences of real numbers and of functions, infinite series, the structure of the real line, and continuous functions. ? Features Two part text for the combined transition and analysis course New approach focuses on exploration and creative thought Emphasizes the limit and sequences Introduces programming skills to explore concepts in analysis Emphasis in on developing mathematical thought Exploration problems expand more traditional exercise sets

Problems and Solutions in Real Analysis

Author: Masayoshi Hata

Publisher: World Scientific

ISBN: 981277601X

Category: Mathematics

Page: 292

View: 3161

This unique book provides a collection of more than 200 mathematical problems and their detailed solutions, which contain very useful tips and skills in real analysis. Each chapter has an introduction, in which some fundamental definitions and propositions are prepared. This also contains many brief historical comments on some significant mathematical results in real analysis together with useful references.Problems and Solutions in Real Analysis may be used as advanced exercises by undergraduate students during or after courses in calculus and linear algebra. It is also useful for graduate students who are interested in analytic number theory. Readers will also be able to completely grasp a simple and elementary proof of the prime number theorem through several exercises. The book is also suitable for non-experts who wish to understand mathematical analysis.

Advanced Calculus

An Introduction to Linear Analysis

Author: Leonard F. Richardson

Publisher: Wiley-Blackwell

ISBN: N.A

Category: Mathematics

Page: 387

View: 8330

Features an introduction to advanced calculus and highlights its inherent concepts from linear algebra "Advanced Calculus" reflects the unifying role of linear algebra in an effort to smooth readers' transition to advanced mathematics. The book fosters the development of complete theorem-proving skills through abundant exercises while also promoting a sound approach to the study. The traditional theorems of elementary differential and integral calculus are rigorously established, presenting the foundations of calculus in a way that reorients thinking toward modern analysis. Following an introduction dedicated to writing proofs, the book is divided into three parts: Part One explores foundational one-variable calculus topics from the viewpoint of linear spaces, norms, completeness, and linear functionals. Part Two covers Fourier series and Stieltjes integration, which are advanced one-variable topics. Part Three is dedicated to multivariable advanced calculus, including inverse and implicit function theorems and Jacobian theorems for multiple integrals. Numerous exercises guide readers through the creation of their own proofs, and they also put newly learned methods into practice. In addition, a "Test Yourself" section at the end of each chapter consists of short questions that reinforce the understanding of basic concepts and theorems. The answers to these questions and other selected exercises can be found at the end of the book along with an appendix that outlines key terms and symbols from set theory. Guiding readers from the study of the topology of the real line to the beginning theorems and concepts of graduate analysis, "Advanced Calculus" is an ideal text for courses in advanced calculus and introductory analysis at the upper-undergraduate and beginning-graduate levels. It also serves as a valuable reference for engineers, scientists, and mathematicians.

A Radical Approach to Real Analysis

Author: David M. Bressoud

Publisher: MAA

ISBN: 9780883857472

Category: Mathematics

Page: 323

View: 2152

Second edition of this introduction to real analysis, rooted in the historical issues that shaped its development.

An Introduction to Mathematical Analysis for Economic Theory and Econometrics

Author: Dean Corbae,Maxwell B. Stinchcombe,Juraj Zeman

Publisher: Princeton University Press

ISBN: 1400833086

Category: Business & Economics

Page: 688

View: 6270

Providing an introduction to mathematical analysis as it applies to economic theory and econometrics, this book bridges the gap that has separated the teaching of basic mathematics for economics and the increasingly advanced mathematics demanded in economics research today. Dean Corbae, Maxwell B. Stinchcombe, and Juraj Zeman equip students with the knowledge of real and functional analysis and measure theory they need to read and do research in economic and econometric theory. Unlike other mathematics textbooks for economics, An Introduction to Mathematical Analysis for Economic Theory and Econometrics takes a unified approach to understanding basic and advanced spaces through the application of the Metric Completion Theorem. This is the concept by which, for example, the real numbers complete the rational numbers and measure spaces complete fields of measurable sets. Another of the book's unique features is its concentration on the mathematical foundations of econometrics. To illustrate difficult concepts, the authors use simple examples drawn from economic theory and econometrics. Accessible and rigorous, the book is self-contained, providing proofs of theorems and assuming only an undergraduate background in calculus and linear algebra. Begins with mathematical analysis and economic examples accessible to advanced undergraduates in order to build intuition for more complex analysis used by graduate students and researchers Takes a unified approach to understanding basic and advanced spaces of numbers through application of the Metric Completion Theorem Focuses on examples from econometrics to explain topics in measure theory

Principia Mathematica.

Author: Alfred North Whitehead,Bertrand Russell

Publisher: N.A

ISBN: N.A

Category: Logic, Symbolic and mathematical

Page: 167

View: 8639

Beweise und Widerlegungen

Die Logik mathematischer Entdeckungen

Author: Imre Lakatos

Publisher: Springer-Verlag

ISBN: 3663001962

Category: Mathematics

Page: 163

View: 3062

Yet Another Introduction to Analysis

Author: Victor Bryant

Publisher: Cambridge University Press

ISBN: 9780521388351

Category: Mathematics

Page: 290

View: 2985

Mathematics education in schools has seen a revolution in recent years. Students everywhere expect the subject to be well-motivated, relevant and practical. When such students reach higher education, the traditional development of analysis, often divorced from the calculus they learned at school, seems highly inappropriate. Shouldn't every step in a first course in analysis arise naturally from the student's experience of functions and calculus in school? And shouldn't such a course take every opportunity to endorse and extend the student's basic knowledge of functions? In Yet Another Introduction to Analysis, the author steers a simple and well-motivated path through the central ideas of real analysis. Each concept is introduced only after its need has become clear and after it has already been used informally. Wherever appropriate, new ideas are related to common topics in math curricula and are used to extend the reader's understanding of those topics. In this book the readers are led carefully through every step in such a way that they will soon be predicting the next step for themselves. In this way students will not only understand analysis, but also enjoy it.

Introduction to Mathematical Structures and Proofs

Author: Larry J. Gerstein

Publisher: Springer Science & Business Media

ISBN: 1461442656

Category: Mathematics

Page: 401

View: 3301

As a student moves from basic calculus courses into upper-division courses in linear and abstract algebra, real and complex analysis, number theory, topology, and so on, a "bridge" course can help ensure a smooth transition. Introduction to Mathematical Structures and Proofs is a textbook intended for such a course, or for self-study. This book introduces an array of fundamental mathematical structures. It also explores the delicate balance of intuition and rigor—and the flexible thinking—required to prove a nontrivial result. In short, this book seeks to enhance the mathematical maturity of the reader. The new material in this second edition includes a section on graph theory, several new sections on number theory (including primitive roots, with an application to card-shuffling), and a brief introduction to the complex numbers (including a section on the arithmetic of the Gaussian integers). Solutions for even numbered exercises are available on springer.com for instructors adopting the text for a course.

An Introduction to Analysis

Author: Gerald G. Bilodeau,G. E. Keough,Paul R. Thie

Publisher: Jones & Bartlett Publishers

ISBN: 1449636039

Category: Mathematics

Page: 333

View: 3940

Part of the Jones and Bartlett International Series in Advanced Mathematics Completely revised and update, the second edition of An Introduction to Analysis presents a concise and sharply focused introdution to the basic concepts of analysis from the development of the real numbers through uniform convergences of a sequence of functions, and includes supplementary material on the calculus of functions of several variables and differential equations. This student-friendly text maintains a cautious and deliberate pace, and examples and figures are used extensively to assist the reader in understanding the concepts and then applying them. Students will become actively engaged in learning process with a broad and comprehensive collection of problems found at the end of each section.

The Nuts and Bolts of Proofs

An Introduction to Mathematical Proofs

Author: Antonella Cupillari

Publisher: Academic Press

ISBN: 0123822181

Category: Mathematics

Page: 296

View: 3186

The Nuts and Bolts of Proofs: An Introduction to Mathematical Proofs provides basic logic of mathematical proofs and shows how mathematical proofs work. It offers techniques for both reading and writing proofs. The second chapter of the book discusses the techniques in proving if/then statements by contrapositive and proofing by contradiction. It also includes the negation statement, and/or. It examines various theorems, such as the if and only-if, or equivalence theorems, the existence theorems, and the uniqueness theorems. In addition, use of counter examples, mathematical induction, composite statements including multiple hypothesis and multiple conclusions, and equality of numbers are covered in this chapter. The book also provides mathematical topics for practicing proof techniques. Included here are the Cartesian products, indexed families, functions, and relations. The last chapter of the book provides review exercises on various topics. Undergraduate students in engineering and physical science will find this book invaluable. Jumps right in with the needed vocabulary—gets students thinking like mathematicians from the beginning Offers a large variety of examples and problems with solutions for students to work through on their own Includes a collection of exercises without solutions to help instructors prepare assignments Contains an extensive list of basic mathematical definitions and concepts needed in abstract mathematics

Lectures on the Hyperreals

An Introduction to Nonstandard Analysis

Author: Robert Goldblatt

Publisher: Springer Science & Business Media

ISBN: 1461206154

Category: Mathematics

Page: 293

View: 3418

An introduction to nonstandard analysis based on a course given by the author. It is suitable for beginning graduates or upper undergraduates, or for self-study by anyone familiar with elementary real analysis. It presents nonstandard analysis not just as a theory about infinitely small and large numbers, but as a radically different way of viewing many standard mathematical concepts and constructions. It is a source of new ideas, objects and proofs, and a wealth of powerful new principles of reasoning. The book begins with the ultrapower construction of hyperreal number systems, and proceeds to develop one-variable calculus, analysis and topology from the nonstandard perspective. It then sets out the theory of enlargements of fragments of the mathematical universe, providing a foundation for the full-scale development of the nonstandard methodology. The final chapters apply this to a number of topics, including Loeb measure theory and its relation to Lebesgue measure on the real line. Highlights include an early introduction of the ideas of internal, external and hyperfinite sets, and a more axiomatic set-theoretic approach to enlargements than is usual.

Real Analysis

An Introduction to the Theory of Real Functions and Integration

Author: Jewgeni H. Dshalalow

Publisher: CRC Press

ISBN: 1420036890

Category: Mathematics

Page: 584

View: 5274

Designed for use in a two-semester course on abstract analysis, REAL ANALYSIS: An Introduction to the Theory of Real Functions and Integration illuminates the principle topics that constitute real analysis. Self-contained, with coverage of topology, measure theory, and integration, it offers a thorough elaboration of major theorems, notions, and constructions needed not only by mathematics students but also by students of statistics and probability, operations research, physics, and engineering. Structured logically and flexibly through the author's many years of teaching experience, the material is presented in three main sections: Part 1, chapters 1through 3, covers the preliminaries of set theory and the fundamentals of metric spaces and topology. This section can also serves as a text for first courses in topology. Part II, chapter 4 through 7, details the basics of measure and integration and stands independently for use in a separate measure theory course. Part III addresses more advanced topics, including elaborated and abstract versions of measure and integration along with their applications to functional analysis, probability theory, and conventional analysis on the real line. Analysis lies at the core of all mathematical disciplines, and as such, students need and deserve a careful, rigorous presentation of the material. REAL ANALYSIS: An Introduction to the Theory of Real Functions and Integration offers the perfect vehicle for building the foundation students need for more advanced studies.

An introduction to complex analysis

Author: O. Carruth McGehee

Publisher: Wiley-Interscience

ISBN: 9780471332336

Category: Mathematics

Page: 425

View: 7509

* Contains over 100 sophisticated graphics to provide helpful examples and reinforce important concepts

An Introduction to Abstract Mathematics

Author: Robert J. Bond,William J. Keane

Publisher: Waveland Press

ISBN: 1478608056

Category: Mathematics

Page: 323

View: 2859

Bond and Keane explicate the elements of logical, mathematical argument to elucidate the meaning and importance of mathematical rigor. With definitions of concepts at their disposal, students learn the rules of logical inference, read and understand proofs of theorems, and write their own proofs all while becoming familiar with the grammar of mathematics and its style. In addition, they will develop an appreciation of the different methods of proof (contradiction, induction), the value of a proof, and the beauty of an elegant argument. The authors emphasize that mathematics is an ongoing, vibrant disciplineits long, fascinating history continually intersects with territory still uncharted and questions still in need of answers. The authors extensive background in teaching mathematics shines through in this balanced, explicit, and engaging text, designed as a primer for higher- level mathematics courses. They elegantly demonstrate process and application and recognize the byproducts of both the achievements and the missteps of past thinkers. Chapters 1-5 introduce the fundamentals of abstract mathematics and chapters 6-8 apply the ideas and techniques, placing the earlier material in a real context. Readers interest is continually piqued by the use of clear explanations, practical examples, discussion and discovery exercises, and historical comments.

An Introduction to Multivariable Mathematics

Author: Leon Simon

Publisher: Morgan & Claypool Publishers

ISBN: 159829802X

Category: Technology & Engineering

Page: 132

View: 4558

The text is designed for use in a forty-lecture introductory course covering linear algebra, multivariable differential calculus, and an introduction to real analysis. The core material of the book is arranged to allow for the main introductory material on linear algebra, including basic vector space theory in Euclidean space and the initial theory of matrices and linear systems, to be covered in the first ten or eleven lectures, followed by a similar number of lectures on basic multivariable analysis, including first theorems on differentiable functions on domains in Euclidean space and a brief introduction to submanifolds. The book then concludes with further essential linear algebra, including the theory of determinants, eigenvalues, and the spectral theorem for real symmetric matrices, and further multivariable analysis, including the contraction mapping principle and the inverse and implicit function theorems. There is also an appendix which provides a nine-lecture introduction to real analysis. There are various ways in which the additional material in the appendix could be integrated into a course--for example in the Stanford Mathematics honors program, run as a four-lecture per week program in the Autumn Quarter each year, the first six lectures of the nine-lecture appendix are presented at the rate of one lecture per week in weeks two through seven of the quarter, with the remaining three lectures per week during those weeks being devoted to the main chapters of the text. It is hoped that the text would be suitable for a quarter or semester course for students who have scored well in the BC Calculus advanced placement examination (or equivalent), particularly those who are considering a possible major in mathematics. The author has attempted to make the presentation rigorous and complete, with the clarity and simplicity needed to make it accessible to an appropriately large group of students. Table of Contents: Linear Algebra / Analysis in R / More Linear Algebra / More Analysis in R / Appendix: Introductory Lectures on Real Analysis

Introduction to Real Analysis

An Educational Approach

Author: William C. Bauldry

Publisher: John Wiley & Sons

ISBN: 1118164431

Category: Mathematics

Page: 262

View: 1540

An accessible introduction to real analysis and its connection to elementary calculus Bridging the gap between the development and history of real analysis, Introduction to Real Analysis: An Educational Approach presents a comprehensive introduction to real analysis while also offering a survey of the field. With its balance of historical background, key calculus methods, and hands-on applications, this book provides readers with a solid foundation and fundamental understanding of real analysis. The book begins with an outline of basic calculus, including a close examination of problems illustrating links and potential difficulties. Next, a fluid introduction to real analysis is presented, guiding readers through the basic topology of real numbers, limits, integration, and a series of functions in natural progression. The book moves on to analysis with more rigorous investigations, and the topology of the line is presented along with a discussion of limits and continuity that includes unusual examples in order to direct readers' thinking beyond intuitive reasoning and on to more complex understanding. The dichotomy of pointwise and uniform convergence is then addressed and is followed by differentiation and integration. Riemann-Stieltjes integrals and the Lebesgue measure are also introduced to broaden the presented perspective. The book concludes with a collection of advanced topics that are connected to elementary calculus, such as modeling with logistic functions, numerical quadrature, Fourier series, and special functions. Detailed appendices outline key definitions and theorems in elementary calculus and also present additional proofs, projects, and sets in real analysis. Each chapter references historical sources on real analysis while also providing proof-oriented exercises and examples that facilitate the development of computational skills. In addition, an extensive bibliography provides additional resources on the topic. Introduction to Real Analysis: An Educational Approach is an ideal book for upper- undergraduate and graduate-level real analysis courses in the areas of mathematics and education. It is also a valuable reference for educators in the field of applied mathematics.

An Introduction to Complex Analysis and Geometry

Author: John P. D'Angelo

Publisher: American Mathematical Soc.

ISBN: 0821852744

Category: Mathematics

Page: 163

View: 7481

An Introduction to Complex Analysis and Geometry provides the reader with a deep appreciation of complex analysis and how this subject fits into mathematics. The book developed from courses given in the Campus Honors Program at the University of Illinois Urbana-Champaign. These courses aimed to share with students the way many mathematics and physics problems magically simplify when viewed from the perspective of complex analysis. The book begins at an elementary level but also contains advanced material. The first four chapters provide an introduction to complex analysis with many elementary and unusual applications. Chapters 5 through 7 develop the Cauchy theory and include some striking applications to calculus. Chapter 8 glimpses several appealing topics, simultaneously unifying the book and opening the door to further study. The 280 exercises range from simple computations to difficult problems. Their variety makes the book especially attractive. A reader of the first four chapters will be able to apply complex numbers in many elementary contexts. A reader of the full book will know basic one complex variable theory and will have seen it integrated into mathematics as a whole. Research mathematicians will discover several novel perspectives.

REAL ANALYSIS

Author: DIPAK CHATTERJEE

Publisher: PHI Learning Pvt. Ltd.

ISBN: 8120345215

Category: Mathematics

Page: 816

View: 9791

This revised edition provides an excellent introduction to topics in Real Analysis through an elaborate exposition of all fundamental concepts and results. The treatment is rigorous and exhaustive—both classical and modern topics are presented in a lucid manner in order to make this text appealing to students. Clear explanations, many detailed worked examples and several challenging ones included in the exercises, enable students to develop problem-solving skills and foster critical thinking. The coverage of the book is incredibly comprehensive, with due emphasis on Lebesgue theory, metric spaces, uniform convergence, Riemann–Stieltjes integral, multi-variable theory, Fourier series, improper integration, and parametric integration. The book is suitable for a complete course in real analysis at the advanced undergraduate or postgraduate level.