An Introduction to the Theory of Groups

Author: Joseph J. Rotman

Publisher: Springer Science & Business Media

ISBN: 1461241766

Category: Mathematics

Page: 517

View: 3868

Anyone who has studied abstract algebra and linear algebra as an undergraduate can understand this book. The first six chapters provide material for a first course, while the rest of the book covers more advanced topics. This revised edition retains the clarity of presentation that was the hallmark of the previous editions. From the reviews: "Rotman has given us a very readable and valuable text, and has shown us many beautiful vistas along his chosen route." --MATHEMATICAL REVIEWS

An Introduction to Algebraic Geometry and Algebraic Groups

Author: Meinolf Geck

Publisher: OUP Oxford

ISBN: 0191663727

Category: Mathematics

Page: 320

View: 354

An accessible text introducing algebraic geometries and algebraic groups at advanced undergraduate and early graduate level, this book develops the language of algebraic geometry from scratch and uses it to set up the theory of affine algebraic groups from first principles. Building on the background material from algebraic geometry and algebraic groups, the text provides an introduction to more advanced and specialised material. An example is the representation theory of finite groups of Lie type. The text covers the conjugacy of Borel subgroups and maximal tori, the theory of algebraic groups with a BN-pair, a thorough treatment of Frobenius maps on affine varieties and algebraic groups, zeta functions and Lefschetz numbers for varieties over finite fields. Experts in the field will enjoy some of the new approaches to classical results. The text uses algebraic groups as the main examples, including worked out examples, instructive exercises, as well as bibliographical and historical remarks.

A Course in the Theory of Groups

Author: Derek J.S. Robinson

Publisher: Springer Science & Business Media

ISBN: 1441985948

Category: Mathematics

Page: 502

View: 5759

"An excellent up-to-date introduction to the theory of groups. It is general yet comprehensive, covering various branches of group theory. The 15 chapters contain the following main topics: free groups and presentations, free products, decompositions, Abelian groups, finite permutation groups, representations of groups, finite and infinite soluble groups, group extensions, generalizations of nilpotent and soluble groups, finiteness properties." —-ACTA SCIENTIARUM MATHEMATICARUM

Lie Groups

An Introduction Through Linear Groups

Author: Wulf Rossmann

Publisher: Oxford University Press on Demand

ISBN: 9780199202515

Category: Mathematics

Page: 265

View: 7118

Lie Groups is intended as an introduction to the theory of Lie groups and their representations at the advanced undergraduate or beginning graduate level. It covers the essentials of the subject starting from basic undergraduate mathematics. The correspondence between linear Lie groups and Lie algebras is developed in its local and global aspects. The classical groups are analysed in detail, first with elementary matrix methods, then with the help of the structural tools typical of thetheory of semisimple groups, such as Cartan subgroups, roots, weights, and reflections. The fundamental groups of the classical groups are worked out as an application of these methods. Manifolds are introduced when needed, in connection with homogeneous spaces, and the elements of differential and integral calculus on manifolds are presented, with special emphasis on integration on groups and homogeneous spaces. Representation theory starts from first principles, such as Schur's lemma and its consequences, and proceeds from there to the Peter-Weyl theorem, Weyl's character formula, and the Borel-Weil theorem, all in the context of linear groups.

An Introduction to Knot Theory

Author: W.B.Raymond Lickorish

Publisher: Springer Science & Business Media

ISBN: 146120691X

Category: Mathematics

Page: 204

View: 9674

A selection of topics which graduate students have found to be a successful introduction to the field, employing three distinct techniques: geometric topology manoeuvres, combinatorics, and algebraic topology. Each topic is developed until significant results are achieved and each chapter ends with exercises and brief accounts of the latest research. What may reasonably be referred to as knot theory has expanded enormously over the last decade and, while the author describes important discoveries throughout the twentieth century, the latest discoveries such as quantum invariants of 3-manifolds as well as generalisations and applications of the Jones polynomial are also included, presented in an easily intelligible style. Readers are assumed to have knowledge of the basic ideas of the fundamental group and simple homology theory, although explanations throughout the text are numerous and well-done. Written by an internationally known expert in the field, this will appeal to graduate students, mathematicians and physicists with a mathematical background wishing to gain new insights in this area.

The Theory of Groups

Author: Hans Zassenhaus

Publisher: Courier Dover Publications

ISBN: 9780486409221

Category: Mathematics

Page: 265

View: 3237

Group theory represents one of the most fundamental elements of mathematics. Indispensable in nearly every branch of the field, concepts from the theory of groups also have important applications beyond mathematics, in such areas as quantum mechanics and crystallography. Hans J. Zassenhaus, a pioneer in the study of group theory, has designed this useful, well-written, graduate-level text to acquaint the reader with group-theoretic methods and to demonstrate their usefulness as tools in the solution of mathematical and physical problems. Starting with an exposition of the fundamental concepts of group theory, including an investigation of axioms, the calculus of complexes, and a theorem of Frobenius, the author moves on to a detailed investigation of the concept of homomorphic mapping, along with an examination of the structure and construction of composite groups from simple components. The elements of the theory of p-groups receive a coherent treatment, and the volume concludes with an explanation of a method by which solvable factor groups may be split off from a finite group. Many of the proofs in the text are shorter and more transparent than the usual, older ones, and a series of helpful appendixes presents material new to this edition. This material includes an account of the connections between lattice theory and group theory, and many advanced exercises illustrating both lattice-theoretical ideas and the extension of group-theoretical concepts to multiplicative domains.

Model Theory : An Introduction

Author: David Marker

Publisher: Springer Science & Business Media

ISBN: 0387227342

Category: Mathematics

Page: 345

View: 8458

Assumes only a familiarity with algebra at the beginning graduate level; Stresses applications to algebra; Illustrates several of the ways Model Theory can be a useful tool in analyzing classical mathematical structures

Linear Representations of Finite Groups

Author: Jean-Pierre Serre

Publisher: Springer Science & Business Media

ISBN: 1468494589

Category: Mathematics

Page: 172

View: 1269

This book consists of three parts, rather different in level and purpose. The first part was originally written for quantum chemists. It describes the correspondence, due to Frobenius, between linear representations and characters. The second part is a course given in 1966 to second-year students of l’Ecole Normale. It completes in a certain sense the first part. The third part is an introduction to Brauer Theory.

An Introduction to Quantum Theory

Author: Keith Hannabuss

Publisher: Clarendon Press

ISBN: 9780191588730

Category: Science

Page: 394

View: 2628

This book provides an introduction to quantum theory primarily for students of mathematics. Although the approach is mainly traditional the discussion exploits ideas of linear algebra, and points out some of the mathematical subtleties of the theory. Amongst the less traditional topics are Bell's inequalities, coherent and squeezed states, and introductions to group representation theory. Later chapters discuss relativistic wave equations and elementary particle symmetries from a group theoretical standpoint rather than the customary Lie algebraic approach. This book is intended for the later years of an undergraduate course or for graduates. It assumes a knowledge of basic linear algebra and elementary group theory, though for convenience these are also summarized in an appendix.

Introduction to Smooth Manifolds

Author: John M. Lee

Publisher: Springer Science & Business Media

ISBN: 0387217525

Category: Mathematics

Page: 631

View: 4159

Author has written several excellent Springer books.; This book is a sequel to Introduction to Topological Manifolds; Careful and illuminating explanations, excellent diagrams and exemplary motivation; Includes short preliminary sections before each section explaining what is ahead and why

Permutation Groups

Author: John D. Dixon,Brian Mortimer

Publisher: Springer Science & Business Media

ISBN: 1461207312

Category: Mathematics

Page: 348

View: 2036

Following the basic ideas, standard constructions and important examples in the theory of permutation groups, the book goes on to develop the combinatorial and group theoretic structure of primitive groups leading to the proof of the pivotal ONan-Scott Theorem which links finite primitive groups with finite simple groups. Special topics covered include the Mathieu groups, multiply transitive groups, and recent work on the subgroups of the infinite symmetric groups. With its many exercises and detailed references to the current literature, this text can serve as an introduction to permutation groups in a course at the graduate or advanced undergraduate level, as well as for self-study.

Matrix Groups

An Introduction to Lie Group Theory

Author: Andrew Baker

Publisher: Springer Science & Business Media

ISBN: 9781852334703

Category: Mathematics

Page: 330

View: 4865

This book offers a first taste of the theory of Lie groups, focusing mainly on matrix groups: closed subgroups of real and complex general linear groups. The first part studies examples and describes classical families of simply connected compact groups. The second section introduces the idea of a lie group and explores the associated notion of a homogeneous space using orbits of smooth actions. The emphasis throughout is on accessibility.

An Introduction to Ergodic Theory

Author: Peter Walters

Publisher: Springer Science & Business Media

ISBN: 9780387951522

Category: Mathematics

Page: 250

View: 2839

The first part of this introduction to ergodic theory addresses measure-preserving transformations of probability spaces and covers such topics as recurrence properties and the Birkhoff ergodic theorem. The second part focuses on the ergodic theory of continuous transformations of compact metrizable spaces. Several examples are detailed, and the final chapter outlines results and applications of ergodic theory to other branches of mathematics.

An Introduction to the Approximation of Functions

Author: Theodore J. Rivlin

Publisher: Courier Corporation

ISBN: 9780486495545

Category: Mathematics

Page: 150

View: 3941

Concise but wide-ranging, this text provides an introduction to methods of approximating continuous functions by functions that depend only on a finite number of parameters. Not only does the author discuss the theoretical underpinnings of many common algorithms, but he also demonstrates the procedure's practical applications. Each method of approximation features at least one algorithm that traces the path to formulation of the actual numerical approximation. This volume will prove particularly useful as a supplement to introductory courses in both mathematical and numerical analysis; written for upper-level graduate students, it presupposes a knowledge of advanced calculus and linear algebra.

Mathematical Control Theory

An Introduction

Author: Jerzy Zabczyk

Publisher: Springer Science & Business Media

ISBN: 9780817647339

Category: Science

Page: 260

View: 3308

Mathematical Control Theory: An Introduction presents, in a mathematically precise manner, a unified introduction to deterministic control theory. In addition to classical concepts and ideas, the author covers the stabilization of nonlinear systems using topological methods, realization theory for nonlinear systems, impulsive control and positive systems, the control of rigid bodies, the stabilization of infinite dimensional systems, and the solution of minimum energy problems. "Covers a remarkable number of topics....The book presents a large amount of material very well, and its use is highly recommended." --Bulletin of the AMS

A Course in Group Theory

Author: J. F. Humphreys

Publisher: Oxford University Press on Demand

ISBN: 9780198534594

Category: Business & Economics

Page: 279

View: 7254

Each chapter ends with a summary of the material covered and notes on the history and development of group theory.

An Introduction to Lie Groups and Lie Algebras

Author: Alexander Kirillov

Publisher: Cambridge University Press

ISBN: 0521889693

Category: Mathematics

Page: 222

View: 9029

This book is an introduction to semisimple Lie algebras; concise and informal, with numerous exercises and examples.

Introduction to Lie Algebras and Representation Theory


Publisher: Springer Science & Business Media

ISBN: 9780387900537

Category: Mathematics

Page: 173

View: 9956

This book is designed to introduce the reader to the theory of semisimple Lie algebras over an algebraically closed field of characteristic 0, with emphasis on representations. A good knowledge of linear algebra (including eigenvalues, bilinear forms, euclidean spaces, and tensor products of vector spaces) is presupposed, as well as some acquaintance with the methods of abstract algebra. The first four chapters might well be read by a bright undergraduate; however, the remaining three chapters are admittedly a little more demanding. Besides being useful in many parts of mathematics and physics, the theory of semisimple Lie algebras is inherently attractive, combining as it does a certain amount of depth and a satisfying degree of completeness in its basic results. Since Jacobson's book appeared a decade ago, improvements have been made even in the classical parts of the theory. I have tried to incor porate some of them here and to provide easier access to the subject for non-specialists. For the specialist, the following features should be noted: (I) The Jordan-Chevalley decomposition of linear transformations is emphasized, with "toral" subalgebras replacing the more traditional Cartan subalgebras in the semisimple case. (2) The conjugacy theorem for Cartan subalgebras is proved (following D. J. Winter and G. D. Mostow) by elementary Lie algebra methods, avoiding the use of algebraic geometry.