An Introduction to the Theory of Groups

Author: Joseph J. Rotman

Publisher: Springer Science & Business Media

ISBN: 1461241766

Category: Mathematics

Page: 517

View: 5718

Anyone who has studied abstract algebra and linear algebra as an undergraduate can understand this book. The first six chapters provide material for a first course, while the rest of the book covers more advanced topics. This revised edition retains the clarity of presentation that was the hallmark of the previous editions. From the reviews: "Rotman has given us a very readable and valuable text, and has shown us many beautiful vistas along his chosen route." --MATHEMATICAL REVIEWS

A Course in the Theory of Groups

Author: Derek J.S. Robinson

Publisher: Springer Science & Business Media

ISBN: 1441985948

Category: Mathematics

Page: 502

View: 6468

"An excellent up-to-date introduction to the theory of groups. It is general yet comprehensive, covering various branches of group theory. The 15 chapters contain the following main topics: free groups and presentations, free products, decompositions, Abelian groups, finite permutation groups, representations of groups, finite and infinite soluble groups, group extensions, generalizations of nilpotent and soluble groups, finiteness properties." —-ACTA SCIENTIARUM MATHEMATICARUM

An Introduction to Homological Algebra

Author: Joseph J. Rotman

Publisher: Springer Science & Business Media

ISBN: 0387683240

Category: Mathematics

Page: 710

View: 963

Graduate mathematics students will find this book an easy-to-follow, step-by-step guide to the subject. Rotman’s book gives a treatment of homological algebra which approaches the subject in terms of its origins in algebraic topology. In this new edition the book has been updated and revised throughout and new material on sheaves and cup products has been added. The author has also included material about homotopical algebra, alias K-theory. Learning homological algebra is a two-stage affair. First, one must learn the language of Ext and Tor. Second, one must be able to compute these things with spectral sequences. Here is a work that combines the two.

An Introduction to the Representation Theory of Groups

Author: Emmanuel Kowalski

Publisher: American Mathematical Society

ISBN: 1470409666

Category: Mathematics

Page: 432

View: 664

Representation theory is an important part of modern mathematics, not only as a subject in its own right but also as a tool for many applications. It provides a means for exploiting symmetry, making it particularly useful in number theory, algebraic geometry, and differential geometry, as well as classical and modern physics. The goal of this book is to present, in a motivated manner, the basic formalism of representation theory as well as some important applications. The style is intended to allow the reader to gain access to the insights and ideas of representation theory--not only to verify that a certain result is true, but also to explain why it is important and why the proof is natural. The presentation emphasizes the fact that the ideas of representation theory appear, sometimes in slightly different ways, in many contexts. Thus the book discusses in some detail the fundamental notions of representation theory for arbitrary groups. It then considers the special case of complex representations of finite groups and discusses the representations of compact groups, in both cases with some important applications. There is a short introduction to algebraic groups as well as an introduction to unitary representations of some noncompact groups. The text includes many exercises and examples.

The Finite Simple Groups

Author: Robert Wilson

Publisher: Springer Science & Business Media

ISBN: 1848009879

Category: Mathematics

Page: 298

View: 361

Here, a thorough grounding in the theory of alternating and classical groups is followed by discussion of exceptional groups (classed as automorphism groups of multilinear forms), sporadic and Chevalley groups, as well as the theory of Lie algebras.

Lie Groups

An Introduction Through Linear Groups

Author: Wulf Rossmann

Publisher: Oxford University Press on Demand

ISBN: 9780199202515

Category: Mathematics

Page: 265

View: 8449

Lie Groups is intended as an introduction to the theory of Lie groups and their representations at the advanced undergraduate or beginning graduate level. It covers the essentials of the subject starting from basic undergraduate mathematics. The correspondence between linear Lie groups and Lie algebras is developed in its local and global aspects. The classical groups are analysed in detail, first with elementary matrix methods, then with the help of the structural tools typical of thetheory of semisimple groups, such as Cartan subgroups, roots, weights, and reflections. The fundamental groups of the classical groups are worked out as an application of these methods. Manifolds are introduced when needed, in connection with homogeneous spaces, and the elements of differential and integral calculus on manifolds are presented, with special emphasis on integration on groups and homogeneous spaces. Representation theory starts from first principles, such as Schur's lemma and its consequences, and proceeds from there to the Peter-Weyl theorem, Weyl's character formula, and the Borel-Weil theorem, all in the context of linear groups.

An Introduction to Knot Theory

Author: W.B.Raymond Lickorish

Publisher: Springer Science & Business Media

ISBN: 146120691X

Category: Mathematics

Page: 204

View: 1734

A selection of topics which graduate students have found to be a successful introduction to the field, employing three distinct techniques: geometric topology manoeuvres, combinatorics, and algebraic topology. Each topic is developed until significant results are achieved and each chapter ends with exercises and brief accounts of the latest research. What may reasonably be referred to as knot theory has expanded enormously over the last decade and, while the author describes important discoveries throughout the twentieth century, the latest discoveries such as quantum invariants of 3-manifolds as well as generalisations and applications of the Jones polynomial are also included, presented in an easily intelligible style. Readers are assumed to have knowledge of the basic ideas of the fundamental group and simple homology theory, although explanations throughout the text are numerous and well-done. Written by an internationally known expert in the field, this will appeal to graduate students, mathematicians and physicists with a mathematical background wishing to gain new insights in this area.

An Introduction to Ergodic Theory

Author: Peter Walters

Publisher: Springer Science & Business Media

ISBN: 9780387951522

Category: Mathematics

Page: 250

View: 9216

This text provides an introduction to ergodic theory suitable for readers knowing basic measure theory. The mathematical prerequisites are summarized in Chapter 0. It is hoped the reader will be ready to tackle research papers after reading the book. The first part of the text is concerned with measure-preserving transformations of probability spaces; recurrence properties, mixing properties, the Birkhoff ergodic theorem, isomorphism and spectral isomorphism, and entropy theory are discussed. Some examples are described and are studied in detail when new properties are presented. The second part of the text focuses on the ergodic theory of continuous transformations of compact metrizable spaces. The family of invariant probability measures for such a transformation is studied and related to properties of the transformation such as topological traitivity, minimality, the size of the non-wandering set, and existence of periodic points. Topological entropy is introduced and related to measure-theoretic entropy. Topological pressure and equilibrium states are discussed, and a proof is given of the variational principle that relates pressure to measure-theoretic entropies. Several examples are studied in detail. The final chapter outlines significant results and some applications of ergodic theory to other branches of mathematics.

Field Theory

Author: Steven Roman

Publisher: Springer Science & Business Media

ISBN: 0387276785

Category: Mathematics

Page: 335

View: 5434

"Springer has just released the second edition of Steven Roman’s Field Theory, and it continues to be one of the best graduate-level introductions to the subject out there....Every section of the book has a number of good exercises that would make this book excellent to use either as a textbook or to learn the material on your own. All in all...a well-written expository account of a very exciting area in mathematics." --THE MAA MATHEMATICAL SCIENCES DIGITAL LIBRARY

An Introduction to Algebraic Geometry and Algebraic Groups

Author: Meinolf Geck

Publisher: OUP Oxford

ISBN: 0191663727

Category: Mathematics

Page: 320

View: 8229

An accessible text introducing algebraic geometries and algebraic groups at advanced undergraduate and early graduate level, this book develops the language of algebraic geometry from scratch and uses it to set up the theory of affine algebraic groups from first principles. Building on the background material from algebraic geometry and algebraic groups, the text provides an introduction to more advanced and specialised material. An example is the representation theory of finite groups of Lie type. The text covers the conjugacy of Borel subgroups and maximal tori, the theory of algebraic groups with a BN-pair, a thorough treatment of Frobenius maps on affine varieties and algebraic groups, zeta functions and Lefschetz numbers for varieties over finite fields. Experts in the field will enjoy some of the new approaches to classical results. The text uses algebraic groups as the main examples, including worked out examples, instructive exercises, as well as bibliographical and historical remarks.

Visual Group Theory

Author: Nathan Carter

Publisher: MAA

ISBN: 9780883857571

Category: Mathematics

Page: 297

View: 2292

Group theory is the branch of mathematics that studies symmetry, found in crystals, art, architecture, music and many other contexts. But its beauty is lost on students when it is taught in a technical style that is difficult to understand. Visual Group Theory assumes only a high school mathematics background and covers a typical undergraduate course in group theory from a thoroughly visual perspective. The more than 300 illustrations in Visual Group Theory bring groups, subgroups, homomorphisms, products, and quotients into clear view. Every topic and theorem is accompanied with a visual demonstration of its meaning and import, from the basics of groups and subgroups through advanced structural concepts such as semidirect products and Sylow theory.

Cohomology of Groups

Author: Kenneth S. Brown

Publisher: Springer Science & Business Media

ISBN: 1468493272

Category: Mathematics

Page: 306

View: 382

Aimed at second year graduate students, this text introduces them to cohomology theory (involving a rich interplay between algebra and topology) with a minimum of prerequisites. No homological algebra is assumed beyond what is normally learned in a first course in algebraic topology, and the basics of the subject, as well as exercises, are given prior to discussion of more specialized topics.

Permutation Groups

Author: John D. Dixon,Brian Mortimer

Publisher: Springer Science & Business Media

ISBN: 1461207312

Category: Mathematics

Page: 348

View: 5945

Following the basic ideas, standard constructions and important examples in the theory of permutation groups, the book goes on to develop the combinatorial and group theoretic structure of primitive groups leading to the proof of the pivotal ONan-Scott Theorem which links finite primitive groups with finite simple groups. Special topics covered include the Mathieu groups, multiply transitive groups, and recent work on the subgroups of the infinite symmetric groups. With its many exercises and detailed references to the current literature, this text can serve as an introduction to permutation groups in a course at the graduate or advanced undergraduate level, as well as for self-study.

Classical Topology and Combinatorial Group Theory

Author: John Stillwell

Publisher: Springer Science & Business Media

ISBN: 1461243726

Category: Mathematics

Page: 336

View: 1941

In recent years, many students have been introduced to topology in high school mathematics. Having met the Mobius band, the seven bridges of Konigsberg, Euler's polyhedron formula, and knots, the student is led to expect that these picturesque ideas will come to full flower in university topology courses. What a disappointment "undergraduate topology" proves to be! In most institutions it is either a service course for analysts, on abstract spaces, or else an introduction to homological algebra in which the only geometric activity is the completion of commutative diagrams. Pictures are kept to a minimum, and at the end the student still does nr~ understand the simplest topological facts, such as the rcason why knots exist. In my opinion, a well-balanced introduction to topology should stress its intuitive geometric aspect, while admitting the legitimate interest that analysts and algebraists have in the subject. At any rate, this is the aim of the present book. In support of this view, I have followed the historical development where practicable, since it clearly shows the influence of geometric thought at all stages. This is not to claim that topology received its main impetus from geometric recreations like the seven bridges; rather, it resulted from the l'isualization of problems from other parts of mathematics-complex analysis (Riemann), mechanics (Poincare), and group theory (Dehn). It is these connec tions to other parts of mathematics which make topology an important as well as a beautiful subject.

The Theory of Groups

Author: Marshall Hall

Publisher: Courier Dover Publications

ISBN: 0486828247

Category: Mathematics

Page: 448

View: 7044

This 1959 text offers an unsurpassed resource for learning and reviewing the basics of a fundamental and ever-expanding area. "This remarkable book undoubtedly will become a standard text on group theory." — American Scientist.

Quantum Groups

Author: Christian Kassel

Publisher: Springer Science & Business Media

ISBN: 1461207835

Category: Mathematics

Page: 534

View: 2181

Here is an introduction to the theory of quantum groups with emphasis on the spectacular connections with knot theory and Drinfeld's recent fundamental contributions. It presents the quantum groups attached to SL2 as well as the basic concepts of the theory of Hopf algebras. Coverage also focuses on Hopf algebras that produce solutions of the Yang-Baxter equation and provides an account of Drinfeld's elegant treatment of the monodromy of the Knizhnik-Zamolodchikov equations.

Homology Theory

An Introduction to Algebraic Topology

Author: James W. Vick

Publisher: Springer Science & Business Media

ISBN: 9780387941264

Category: Mathematics

Page: 242

View: 3030

This book is designed to be an introduction to some of the basic ideas in the field of algebraic topology. In particular, it is devoted to the foundations and applications of homology theory. The only prerequisite for the student is a basic knowledge of abelian groups and point set topology. The essentials of singular homology are given in the first chapter, along with some of the most important applications. In this way the student can quickly see the importance of the material. The successive topics include attaching spaces, finite CW complexes, the Eilenberg-Steenrod axioms, cohomology products, manifolds, Poincare duality, and fixed point theory. Throughout the book, the approach is as illustrative as possible, with numerous examples and diagrams. Extremes of generality are sacrificed when they are likely to obscure the essential concepts involved. The book is intended to be easily read by students as a textbook for a course or as a source for individual study. This second edition has been expanded to include a new chapter on covering spaces, as well as additional illuminating exercises. The conceptual approach is again used to show how lifting problems give rise to the fundamental group and its properties.

Introduction to Cyclotomic Fields

Author: Lawrence C. Washington

Publisher: Springer Science & Business Media

ISBN: 1461219345

Category: Mathematics

Page: 490

View: 4283

This text on a central area of number theory covers p-adic L-functions, class numbers, cyclotomic units, Fermat’s Last Theorem, and Iwasawa’s theory of Z_p-extensions. This edition contains a new chapter on the work of Thaine, Kolyvagin, and Rubin, including a proof of the Main Conjecture, as well as a chapter on other recent developments, such as primality testing via Jacobi sums and Sinnott’s proof of the vanishing of Iwasawa’s f-invariant.

Algebraic K-Theory and Its Applications

Author: Jonathan Rosenberg

Publisher: Springer Science & Business Media

ISBN: 1461243149

Category: Mathematics

Page: 394

View: 1597

Algebraic K-Theory is crucial in many areas of modern mathematics, especially algebraic topology, number theory, algebraic geometry, and operator theory. This text is designed to help graduate students in other areas learn the basics of K-Theory and get a feel for its many applications. Topics include algebraic topology, homological algebra, algebraic number theory, and an introduction to cyclic homology and its interrelationship with K-Theory.

Introduction to Topological Manifolds

Author: John Lee

Publisher: Springer Science & Business Media

ISBN: 1441979409

Category: Mathematics

Page: 433

View: 7524

This book is an introduction to manifolds at the beginning graduate level, and accessible to any student who has completed a solid undergraduate degree in mathematics. It contains the essential topological ideas that are needed for the further study of manifolds, particularly in the context of differential geometry, algebraic topology, and related fields. Although this second edition has the same basic structure as the first edition, it has been extensively revised and clarified; not a single page has been left untouched. The major changes include a new introduction to CW complexes (replacing most of the material on simplicial complexes in Chapter 5); expanded treatments of manifolds with boundary, local compactness, group actions, and proper maps; and a new section on paracompactness.