Analysis and Algebra on Differentiable Manifolds

A Workbook for Students and Teachers

Author: Pedro M. Gadea,Jaime Muñoz Masqué,Ihor V. Mykytyuk

Publisher: Springer Science & Business Media

ISBN: 9400759525

Category: Mathematics

Page: 618

View: 3270

This is the second edition of this best selling problem book for students, now containing over 400 completely solved exercises on differentiable manifolds, Lie theory, fibre bundles and Riemannian manifolds. The exercises go from elementary computations to rather sophisticated tools. Many of the definitions and theorems used throughout are explained in the first section of each chapter where they appear. A 56-page collection of formulae is included which can be useful as an aide-mémoire, even for teachers and researchers on those topics. In this 2nd edition: • 76 new problems • a section devoted to a generalization of Gauss’ Lemma • a short novel section dealing with some properties of the energy of Hopf vector fields • an expanded collection of formulae and tables • an extended bibliography Audience This book will be useful to advanced undergraduate and graduate students of mathematics, theoretical physics and some branches of engineering with a rudimentary knowledge of linear and multilinear algebra.

Analysis and Algebra on Differentiable Manifolds: A Workbook for Students and Teachers

Author: P.M. Gadea,J. Muñoz Masqué

Publisher: Springer Science & Business Media

ISBN: 9789048135646

Category: Mathematics

Page: 478

View: 4483

A famous Swiss professor gave a student’s course in Basel on Riemann surfaces. After a couple of lectures, a student asked him, “Professor, you have as yet not given an exact de nition of a Riemann surface.” The professor answered, “With Riemann surfaces, the main thing is to UNDERSTAND them, not to de ne them.” The student’s objection was reasonable. From a formal viewpoint, it is of course necessary to start as soon as possible with strict de nitions, but the professor’s - swer also has a substantial background. The pure de nition of a Riemann surface— as a complex 1-dimensional complex analytic manifold—contributes little to a true understanding. It takes a long time to really be familiar with what a Riemann s- face is. This example is typical for the objects of global analysis—manifolds with str- tures. There are complex concrete de nitions but these do not automatically explain what they really are, what we can do with them, which operations they really admit, how rigid they are. Hence, there arises the natural question—how to attain a deeper understanding? One well-known way to gain an understanding is through underpinning the d- nitions, theorems and constructions with hierarchies of examples, counterexamples and exercises. Their choice, construction and logical order is for any teacher in global analysis an interesting, important and fun creating task.

Finite-Elemente-Methoden

Author: Klaus-Jürgen Bathe

Publisher: Springer Verlag

ISBN: 9783540668060

Category: Technology & Engineering

Page: 1253

View: 6159

Dieses Lehr- und Handbuch behandelt sowohl die elementaren Konzepte als auch die fortgeschrittenen und zukunftsweisenden linearen und nichtlinearen FE-Methoden in Statik, Dynamik, Festkörper- und Fluidmechanik. Es wird sowohl der physikalische als auch der mathematische Hintergrund der Prozeduren ausführlich und verständlich beschrieben. Das Werk enthält eine Vielzahl von ausgearbeiteten Beispielen, Rechnerübungen und Programmlisten. Als Übersetzung eines erfolgreichen amerikanischen Lehrbuchs hat es sich in zwei Auflagen auch bei den deutschsprachigen Ingenieuren etabliert. Die umfangreichen Änderungen gegenüber der Vorauflage innerhalb aller Kapitel - vor allem aber der fortgeschrittenen - spiegeln die rasche Entwicklung innerhalb des letzten Jahrzehnts auf diesem Gebiet wieder.

Klassische Mechanik

Author: Herbert Goldstein,Charles P. Poole, Jr.,John L. Safko, Sr.

Publisher: John Wiley & Sons

ISBN: 3527662073

Category: Science

Page: 700

View: 5078

Der Goldstein gehört zu den Standardwerken für die Vorlesung in Klassischer Mechanik, die Pflichtvorlesung und Teil des Theorie-Lehrplans jedes Physik-Studienganges ist. Für diese aktuelle Ausgabe haben Charles Poole und John Safko die Texte überarbeitet und neueste Themen, Anwendungen und Notationen eingearbeitet und sind damit auf moderne Trends in der Theoretischen Mechanik eingegangen. Neue numerische Übungen verhelfen den Studenten zur Fähigkeit, Computeranwendungen für die Lösung von Physikproblemen zu benutzen. Mathematische Techniken werden detailliert eingeführt, so daß der Text auch für Studenten ohne den entsprechenden Hintergrund der Theoretischen Mechanik verständlich ist.

Vektoranalysis

Author: Klaus Jänich

Publisher: N.A

ISBN: 9783540571421

Category: Lehrbuch - Differenzierbare Mannigfaltigkeit - Vektoranalysis

Page: 275

View: 9055

Die Vektoranalysis handelt, in klassischer Darstellung, von Vektorfeldern, den Operatoren Gradient, Divergenz und Rotation, von Linien-, Fl chen- und Volumenintegralen und von den Integrals tzen von Gau, Stokes und Green. In moderner Fassung ist es der Cartansche Kalk l mit dem Satz von Stokes. Das vorliegende Buch vertritt grunds tzlich die moderne Herangehensweise, geht aber auch sorgf ltig auf die klassische Notation und Auffassung ein. Das Buch richtet sich an Mathematik- und Physikstudenten ab dem zweiten Studienjahr, die mit den Grundbegriffen der Differential- und Integralrechnung in einer und mehreren Variablen sowie der Topologie vertraut sind. Der sehr pers nliche Stil des Autors und die aus anderen B chern bereits bekannten Lernhilfen, wie: viele Figuren, mehr als 50 kommentierte bungsaufgaben, ber 100 Tests mit Antworten machen, auch diesen Text zum Selbststudium hervorragend geeignet.

Differentialgeometrie von Kurven und Flächen

Author: Manfredo P. do Carmo

Publisher: Springer-Verlag

ISBN: 3322850722

Category: Technology & Engineering

Page: 263

View: 7497

Inhalt: Kurven - Reguläre Flächen - Die Geometrie der Gauß-Abbildung - Die innere Geometrie von Flächen - Anhang

Differentialgeometrie

Kurven - Flächen - Mannigfaltigkeiten

Author: Wolfgang Kühnel

Publisher: Springer-Verlag

ISBN: 3834896551

Category: Mathematics

Page: 280

View: 6600

Dieses Buch ist eine Einführung in die Differentialgeometrie. Zunächst geht es um die klassischen Aspekte wie die Geometrie von Kurven und Flächen, bevor dann höherdimensionale Flächen sowie abstrakte Mannigfaltigkeiten betrachtet werden. Die Nahtstelle ist dabei das zentrale Kapitel "Die innere Geometrie von Flächen". Dieses führt den Leser bis hin zu dem berühmten Satz von Gauß-Bonnet, der ein entscheidendes Bindeglied zwischen lokaler und globaler Geometrie darstellt. Die zweite Hälfte des Buches ist der Riemannschen Geometrie gewidmet. Den Abschluss bildet ein Kapitel über "Einstein-Räume", die eine große Bedeutung sowohl in der "Reinen Mathematik" als auch in der Allgemeinen Relativitätstheorie von A. Einstein haben. Es wird großer Wert auf Anschaulichkeit gelegt, was durch zahlreiche Abbildungen unterstützt wird. Im Laufe der Neuauflagen wurde der Text erweitert, neue Aufgaben wurden hinzugefügt und am Ende des Buches wurden zusätzliche Hinweise zur Lösung der Übungsaufgaben ergänzt. Der Text wurde für die fünfte Auflage gründlich durchgesehen und an einigen Stellen verbessert.

Algorithmen - Eine Einführung

Author: Thomas H. Cormen,Charles E. Leiserson,Ronald Rivest,Clifford Stein

Publisher: Walter de Gruyter GmbH & Co KG

ISBN: 3110522012

Category: Computers

Page: 1339

View: 9639

Der "Cormen" bietet eine umfassende und vielseitige Einführung in das moderne Studium von Algorithmen. Es stellt viele Algorithmen Schritt für Schritt vor, behandelt sie detailliert und macht deren Entwurf und deren Analyse allen Leserschichten zugänglich. Sorgfältige Erklärungen zur notwendigen Mathematik helfen, die Analyse der Algorithmen zu verstehen. Den Autoren ist es dabei geglückt, Erklärungen elementar zu halten, ohne auf Tiefe oder mathematische Exaktheit zu verzichten. Jedes der weitgehend eigenständig gestalteten Kapitel stellt einen Algorithmus, eine Entwurfstechnik, ein Anwendungsgebiet oder ein verwandtes Thema vor. Algorithmen werden beschrieben und in Pseudocode entworfen, der für jeden lesbar sein sollte, der schon selbst ein wenig programmiert hat. Zahlreiche Abbildungen verdeutlichen, wie die Algorithmen arbeiten. Ebenfalls angesprochen werden Belange der Implementierung und andere technische Fragen, wobei, da Effizienz als Entwurfskriterium betont wird, die Ausführungen eine sorgfältige Analyse der Laufzeiten der Programme mit ein schließen. Über 1000 Übungen und Problemstellungen und ein umfangreiches Quellen- und Literaturverzeichnis komplettieren das Lehrbuch, dass durch das ganze Studium, aber auch noch danach als mathematisches Nachschlagewerk oder als technisches Handbuch nützlich ist. Für die dritte Auflage wurde das gesamte Buch aktualisiert. Die Änderungen sind vielfältig und umfassen insbesondere neue Kapitel, überarbeiteten Pseudocode, didaktische Verbesserungen und einen lebhafteren Schreibstil. So wurden etwa - neue Kapitel zu van-Emde-Boas-Bäume und mehrfädigen (engl.: multithreaded) Algorithmen aufgenommen, - das Kapitel zu Rekursionsgleichungen überarbeitet, sodass es nunmehr die Teile-und-Beherrsche-Methode besser abdeckt, - die Betrachtungen zu dynamischer Programmierung und Greedy-Algorithmen überarbeitet; Memoisation und der Begriff des Teilproblem-Graphen als eine Möglichkeit, die Laufzeit eines auf dynamischer Programmierung beruhender Algorithmus zu verstehen, werden eingeführt. - 100 neue Übungsaufgaben und 28 neue Problemstellungen ergänzt. Umfangreiches Dozentenmaterial (auf englisch) ist über die Website des US-Verlags verfügbar.

Frühe mathematische Bildung – Ziele und Gelingensbedingungen für den Elementar- und Primarbereich

Author: Stiftung "Haus der kleinen Forscher"

Publisher: Verlag Barbara Budrich

ISBN: 3847410687

Category: Education

Page: 230

View: 2125

Im Rahmen der Schriftenreihe „Wissenschaftliche Untersuchungen zur Arbeit der Stiftung ‚Haus der kleinen Forscher‘“ werden regelmäßig wissenschaftliche Beiträge von renommierten Expertinnen und Experten aus dem Bereich der frühen Bildung veröffentlicht. Diese Schriftenreihe dient einem fachlichen Dialog zwischen Stiftung, Wissenschaft und Praxis, mit dem Ziel, allen Kitas, Horten und Grundschulen in Deutschland fundierte Unterstützung für ihren frühkindlichen Bildungsauftrag zu geben. Der vorliegende achte Band der Reihe mit einem Geleitwort von Kristina Reiss stellt die Ziele und Gelingensbedingungen mathematischer Bildung im Elementarund Primarbereich in den Fokus. Christiane Benz, Meike Grüßing, Jens Holger Lorenz, Christoph Selter und Bernd Wollring spezifizieren in ihrer Expertise pädagogisch-inhaltliche Zieldimensionen mathematischer Bildung im Kita- und Grundschulalter. Neben einer theoretischen Fundierung verschiedener Zielbereiche werden Instrumente für deren Messung aufgeführt. Des Weiteren erörtern die Autorinnen und Autoren Gelingensbedingungen für eine effektive und wirkungsvolle frühe mathematische Bildung in der Praxis. Sie geben zudem Empfehlungen für die Weiterentwicklung der Stiftungsangebote und die wissenschaftliche Begleitung der Stiftungsarbeit im Bereich Mathematik. Das Schlusskapitel des Bandes beschreibt die Umsetzung dieser fachlichen Empfehlungen in den inhaltlichen Angeboten der Stiftung „Haus der kleinen Forscher“.

Catalog of Copyright Entries. Third Series

1963: January-June

Author: N.A

Publisher: Copyright Office, Library of Congress

ISBN: N.A

Category: Copyright

Page: 1234

View: 3554

Includes Part 1, Number 1: Books and Pamphlets, Including Serials and Contributions to Periodicals (January - June)

Manifolds and Modular Forms

Author: Friedrich Hirzebruch

Publisher: Springer-Verlag

ISBN: 3663140458

Category: Mathematics

Page: 212

View: 5503

Das BUCH der Beweise

Author: Martin Aigner,Günter M. Ziegler

Publisher: Springer-Verlag

ISBN: 3662064545

Category: Mathematics

Page: 247

View: 6916

Die elegantesten mathematischen Beweise, spannend und für jeden Interessierten verständlich. "Der Beweis selbst, seine Ästhetik, seine Pointe geht ins Geschichtsbuch der Königin der Wissenschaften ein. Ihre Anmut offenbart sich in dem gelungenen und geschickt illustrierten Buch." Die Zeit

Robuste Regelung

Analyse und Entwurf von linearen Regelungssystemen mit unsicheren physikalischen Parametern

Author: Jürgen Ackermann

Publisher: Springer-Verlag

ISBN: 366209777X

Category: Technology & Engineering

Page: 423

View: 7570

Robuste Regelung stellt einen für die praktische Umsetzung wichtigen Aspekt der Regelungstheorie dar. Sie gibt Auskunft, ob die Einschwingvorgänge linearer Regelsysteme rasch abklingen. Dies ist wichtig bei realen Systemen, bei denen sich starke Änderungen der Betriebsbedingungen einstellen, in der Praxis z.B. bei einem Kran mit variabler Seillänge oder Lastmasse, aber auch bei einem Flugzeug, das mit verschiedenen Geschwindigkeiten in verschiedenen Höhen fliegt. Robuste Regelung von Jürgen Ackermann liefert den neuesten Stand der Verfahren zur Robustheitsanalyse. Es werden Entwurfswerkzeuge (Parameterraum-Verfahren, Gütevektor-Optimierung) vorgestellt und auf die Regelung praktischer mechanischer Systeme aus Automobil- und Luftfahrttechnik angewendet. Angesprochen sind in erster Linie Ingenieure der Elektrotechnik und des Maschinenbaus.

Grundlagen der Mathematik für Dummies

Author: Mark Zegarelli

Publisher: John Wiley & Sons

ISBN: 3527657657

Category: Mathematics

Page: 353

View: 3678

Mathematik ist nicht jedermanns Sache, manchmal sind es schon die Grundlagen, die fehlen: Einst gelernt, doch jetzt vergessen. Bruch- und Prozentrechnung, Fl?cheninhalt, Gleichungen, wie funktionierte das noch einmal? Mark Zegarelli erkl?rt es Ihnen, einfach und am?sant und immer schnell auf dem Punkt, hilft er Ihnen Ihre Wissensl?cken zu schlie?en. So verlieren Geometrie und Algebra f?r Sie den Schrecken.

Unvergängliche Geometrie

Author: H.S. Coxeter

Publisher: Springer-Verlag

ISBN: 3034851510

Category: Juvenile Nonfiction

Page: 558

View: 7917

Einführung in die Geometrie und Topologie

Author: Werner Ballmann

Publisher: Springer-Verlag

ISBN: 3034809018

Category: Mathematics

Page: 162

View: 1097

Das Buch bietet eine Einführung in die Topologie, Differentialtopologie und Differentialgeometrie. Es basiert auf Manuskripten, die in verschiedenen Vorlesungszyklen erprobt wurden. Im ersten Kapitel werden grundlegende Begriffe und Resultate aus der mengentheoretischen Topologie bereitgestellt. Eine Ausnahme hiervon bildet der Jordansche Kurvensatz, der für Polygonzüge bewiesen wird und eine erste Idee davon vermitteln soll, welcher Art tiefere topologische Probleme sind. Im zweiten Kapitel werden Mannigfaltigkeiten und Liesche Gruppen eingeführt und an einer Reihe von Beispielen veranschaulicht. Diskutiert werden auch Tangential- und Vektorraumbündel, Differentiale, Vektorfelder und Liesche Klammern von Vektorfeldern. Weiter vertieft wird diese Diskussion im dritten Kapitel, in dem die de Rhamsche Kohomologie und das orientierte Integral eingeführt und der Brouwersche Fixpunktsatz, der Jordan-Brouwersche Zerlegungssatz und die Integralformel von Stokes bewiesen werden. Das abschließende vierte Kapitel ist den Grundlagen der Differentialgeometrie gewidmet. Entlang der Entwicklungslinien, die die Geometrie der Kurven und Untermannigfaltigkeiten in Euklidischen Räumen durchlaufen hat, werden Zusammenhänge und Krümmung, die zentralen Konzepte der Differentialgeometrie, diskutiert. Den Höhepunkt bilden die Gaussgleichungen, die Version des theorema egregium von Gauss für Untermannigfaltigkeiten beliebiger Dimension und Kodimension. Das Buch richtet sich in erster Linie an Mathematik- und Physikstudenten im zweiten und dritten Studienjahr und ist als Vorlage für ein- oder zweisemestrige Vorlesungen geeignet.