Calculus Problems

Author: Marco Baronti,Filippo De Mari,Robertus van der Putten,Irene Venturi

Publisher: Springer

ISBN: 3319154281

Category: Mathematics

Page: 366

View: 8869

This book, intended as a practical working guide for calculus students, includes 450 exercises. It is designed for undergraduate students in Engineering, Mathematics, Physics, or any other field where rigorous calculus is needed, and will greatly benefit anyone seeking a problem-solving approach to calculus. Each chapter starts with a summary of the main definitions and results, which is followed by a selection of solved exercises accompanied by brief, illustrative comments. A selection of problems with indicated solutions rounds out each chapter. A final chapter explores problems that are not designed with a single issue in mind but instead call for the combination of a variety of techniques, rounding out the book’s coverage. Though the book’s primary focus is on functions of one real variable, basic ordinary differential equations (separation of variables, linear first order and constant coefficients ODEs) are also discussed. The material is taken from actual written tests that have been delivered at the Engineering School of the University of Genoa. Literally thousands of students have worked on these problems, ensuring their real-world applicability.

Discrete Calculus

Methods for Counting

Author: Carlo Mariconda,Alberto Tonolo

Publisher: Springer

ISBN: 3319030388

Category: Mathematics

Page: 665

View: 7417

This book provides an introduction to combinatorics, finite calculus, formal series, recurrences, and approximations of sums. Readers will find not only coverage of the basic elements of the subjects but also deep insights into a range of less common topics rarely considered within a single book, such as counting with occupancy constraints, a clear distinction between algebraic and analytical properties of formal power series, an introduction to discrete dynamical systems with a thorough description of Sarkovskii’s theorem, symbolic calculus, and a complete description of the Euler-Maclaurin formulas and their applications. Although several books touch on one or more of these aspects, precious few cover all of them. The authors, both pure mathematicians, have attempted to develop methods that will allow the student to formulate a given problem in a precise mathematical framework. The aim is to equip readers with a sound strategy for classifying and solving problems by pursuing a mathematically rigorous yet user-friendly approach. This is particularly useful in combinatorics, a field where, all too often, exercises are solved by means of ad hoc tricks. The book contains more than 400 examples and about 300 problems, and the reader will be able to find the proof of every result. To further assist students and teachers, important matters and comments are highlighted, and parts that can be omitted, at least during a first and perhaps second reading, are identified.

A textbook on Ordinary Differential Equations

Author: Shair Ahmad,Antonio Ambrosetti

Publisher: Springer

ISBN: 331902129X

Category: Mathematics

Page: 312

View: 6265

The book is a primer of the theory of Ordinary Differential Equations. Each chapter is completed by a broad set of exercises; the reader will also find a set of solutions of selected exercises. The book contains many interesting examples as well (like the equations for the electric circuits, the pendulum equation, the logistic equation, the Lotka-Volterra system, and many other) which introduce the reader to some interesting aspects of the theory and its applications. The work is mainly addressed to students of Mathematics, Physics, Engineering, Statistics, Computer Sciences, with knowledge of Calculus and Linear Algebra, and contains more advanced topics for further developments, such as Laplace transform; Stability theory and existence of solutions to Boundary Value problems. A complete Solutions Manual, containing solutions to all the exercises published in the book, is available. Instructors who wish to adopt the book may request the manual by writing directly to one of the authors.

Partial Differential Equations in Action

From Modelling to Theory

Author: Sandro Salsa

Publisher: Springer

ISBN: 3319312383

Category: Mathematics

Page: 686

View: 6359

The book is intended as an advanced undergraduate or first-year graduate course for students from various disciplines, including applied mathematics, physics and engineering. It has evolved from courses offered on partial differential equations (PDEs) over the last several years at the Politecnico di Milano. These courses had a twofold purpose: on the one hand, to teach students to appreciate the interplay between theory and modeling in problems arising in the applied sciences, and on the other to provide them with a solid theoretical background in numerical methods, such as finite elements. Accordingly, this textbook is divided into two parts. The first part, chapters 2 to 5, is more elementary in nature and focuses on developing and studying basic problems from the macro-areas of diffusion, propagation and transport, waves and vibrations. In turn the second part, chapters 6 to 11, concentrates on the development of Hilbert spaces methods for the variational formulation and the analysis of (mainly) linear boundary and initial-boundary value problems.The third edition contains a few text and formulas revisions and new exercises.

Introduction to Measure Theory and Functional Analysis

Author: Piermarco Cannarsa,Teresa D'Aprile

Publisher: Springer

ISBN: 3319170198

Category: Mathematics

Page: 314

View: 7595

This book introduces readers to theories that play a crucial role in modern mathematics, such as integration and functional analysis, employing a unifying approach that views these two subjects as being deeply intertwined. This feature is particularly evident in the broad range of problems examined, the solutions of which are often supported by generous hints. If the material is split into two courses, it can be supplemented by additional topics from the third part of the book, such as functions of bounded variation, absolutely continuous functions, and signed measures. This textbook addresses the needs of graduate students in mathematics, who will find the basic material they will need in their future careers, as well as those of researchers, who will appreciate the self-contained exposition which requires no other preliminaries than basic calculus and linear algebra.

Amazing and Aesthetic Aspects of Analysis

Author: Paul Loya

Publisher: Springer

ISBN: 1493967959

Category: Mathematics

Page: 722

View: 6660

Lively prose and imaginative exercises draw the reader into this unique introductory real analysis textbook. Motivating the fundamental ideas and theorems that underpin real analysis with historical remarks and well-chosen quotes, the author shares his enthusiasm for the subject throughout. A student reading this book is invited not only to acquire proficiency in the fundamentals of analysis, but to develop an appreciation for abstraction and the language of its expression. In studying this book, students will encounter: the interconnections between set theory and mathematical statements and proofs; the fundamental axioms of the natural, integer, and real numbers; rigorous ε-N and ε-δ definitions; convergence and properties of an infinite series, product, or continued fraction; series, product, and continued fraction formulæ for the various elementary functions and constants. Instructors will appreciate this engaging perspective, showcasing the beauty of these fundamental results.

Calculus I

Author: Jerrold Marsden,Alan Weinstein

Publisher: Springer Science & Business Media

ISBN: 1461250242

Category: Mathematics

Page: 388

View: 1278

The goal of this text is to help students learn to use calculus intelligently for solving a wide variety of mathematical and physical problems. This book is an outgrowth of our teaching of calculus at Berkeley, and the present edition incorporates many improvements based on our use of the first edition. We list below some of the key features of the book. Examples and Exercises The exercise sets have been carefully constructed to be of maximum use to the students. With few exceptions we adhere to the following policies. • The section exercises are graded into three consecutive groups: (a) The first exercises are routine, modelled almost exactly on the exam ples; these are intended to give students confidence. (b) Next come exercises that are still based directly on the examples and text but which may have variations of wording or which combine different ideas; these are intended to train students to think for themselves. (c) The last exercises in each set are difficult. These are marked with a star (*) and some will challenge even the best students. Difficult does not necessarily mean theoretical; often a starred problem is an interesting application that requires insight into what calculus is really about. • The exercises come in groups of two and often four similar ones.

Concepts in Quantum Field Theory

A Practitioner's Toolkit

Author: Victor Ilisie

Publisher: Springer

ISBN: 3319229664

Category: Science

Page: 190

View: 1346

This book uses less strict yet still formal mathematical language to clarify a variety of concepts in Quantum Field Theory that remain somewhat “fuzzy” in many books designed for undergraduates and fresh graduates. The aim is not to replace formal books on Quantum Field Theory, but rather to offer a helpful complementary tool for beginners in the field. Features include a reader-friendly introduction to tensor calculus and the concept of manifolds; a simple and robust treatment for dimensional regularization; a consistent explanation of the renormalization procedure, step by step and in a transparent manner at all orders, using the QED Lagrangian; and extensive treatment of infrared as well as ultraviolet divergences. The most general (Lorentz invariant) form of Noether's theorem is presented and applied to a few simple yet relevant examples in Quantum Field Theory. These and further interesting topics are addressed in a way that will be accessible for the target readership. Some familiarity with basic notions of Quantum Field Theory and the basics of Special Relativity is assumed.

Curves and Surfaces

Author: M. Abate,F. Tovena

Publisher: Springer Science & Business Media

ISBN: 8847019419

Category: Mathematics

Page: 396

View: 7124

The book provides an introduction to Differential Geometry of Curves and Surfaces. The theory of curves starts with a discussion of possible definitions of the concept of curve, proving in particular the classification of 1-dimensional manifolds. We then present the classical local theory of parametrized plane and space curves (curves in n-dimensional space are discussed in the complementary material): curvature, torsion, Frenet’s formulas and the fundamental theorem of the local theory of curves. Then, after a self-contained presentation of degree theory for continuous self-maps of the circumference, we study the global theory of plane curves, introducing winding and rotation numbers, and proving the Jordan curve theorem for curves of class C2, and Hopf theorem on the rotation number of closed simple curves. The local theory of surfaces begins with a comparison of the concept of parametrized (i.e., immersed) surface with the concept of regular (i.e., embedded) surface. We then develop the basic differential geometry of surfaces in R3: definitions, examples, differentiable maps and functions, tangent vectors (presented both as vectors tangent to curves in the surface and as derivations on germs of differentiable functions; we shall consistently use both approaches in the whole book) and orientation. Next we study the several notions of curvature on a surface, stressing both the geometrical meaning of the objects introduced and the algebraic/analytical methods needed to study them via the Gauss map, up to the proof of Gauss’ Teorema Egregium. Then we introduce vector fields on a surface (flow, first integrals, integral curves) and geodesics (definition, basic properties, geodesic curvature, and, in the complementary material, a full proof of minimizing properties of geodesics and of the Hopf-Rinow theorem for surfaces). Then we shall present a proof of the celebrated Gauss-Bonnet theorem, both in its local and in its global form, using basic properties (fully proved in the complementary material) of triangulations of surfaces. As an application, we shall prove the Poincaré-Hopf theorem on zeroes of vector fields. Finally, the last chapter will be devoted to several important results on the global theory of surfaces, like for instance the characterization of surfaces with constant Gaussian curvature, and the orientability of compact surfaces in R3.

Calculus Refresher

Author: A. A. Klaf

Publisher: Courier Corporation

ISBN: 0486138607

Category: Mathematics

Page: 431

View: 4334

Unique refresher covers important aspects of integral and differential calculus via 756 questions. Features constants, variables, functions, increments, derivatives, differentiation, more. A 50-page section applies calculus to engineering problems. Includes 566 problems, most with answers.

Mathematical Models and Numerical Simulation in Electromagnetism

Author: Alfredo Bermúdez de Castro,Dolores Gómez,Pilar Salgado

Publisher: Springer

ISBN: 3319029495

Category: Mathematics

Page: 432

View: 829

The book represents a basic support for a master course in electromagnetism oriented to numerical simulation. The main goal of the book is that the reader knows the boundary-value problems of partial differential equations that should be solved in order to perform computer simulation of electromagnetic processes. Moreover it includes a part devoted to electric circuit theory based on ordinary differential equations. The book is mainly oriented to electric engineering applications, going from the general to the specific, namely, from the full Maxwell’s equations to the particular cases of electrostatics, direct current, magnetostatics and eddy currents models. Apart from standard exercises related to analytical calculus, the book includes some others oriented to real-life applications solved with MaxFEM free simulation software.

Classical Methods in Ordinary Differential Equations

With Applications to Boundary Value Problems

Author: Stuart P. Hastings,J. Bryce McLeod

Publisher: American Mathematical Soc.

ISBN: 0821846949

Category: Mathematics

Page: 373

View: 4382

This text emphasizes rigorous mathematical techniques for the analysis of boundary value problems for ODEs arising in applications. The emphasis is on proving existence of solutions, but there is also a substantial chapter on uniqueness and multiplicity questions and several chapters which deal with the asymptotic behavior of solutions with respect to either the independent variable or some parameter. These equations may give special solutions of important PDEs, such as steady state or traveling wave solutions. Often two, or even three, approaches to the same problem are described. The advantages and disadvantages of different methods are discussed. The book gives complete classical proofs, while also emphasizing the importance of modern methods, especially when extensions to infinite dimensional settings are needed. There are some new results as well as new and improved proofs of known theorems. The final chapter presents three unsolved problems which have received much attention over the years. Both graduate students and more experienced researchers will be interested in the power of classical methods for problems which have also been studied with more abstract techniques. The presentation should be more accessible to mathematically inclined researchers from other areas of science and engineering than most graduate texts in mathematics.

Real Analysis for the Undergraduate

With an Invitation to Functional Analysis

Author: Matthew A. Pons

Publisher: Springer Science & Business Media

ISBN: 1461496381

Category: Mathematics

Page: 409

View: 3680

This undergraduate textbook introduces students to the basics of real analysis, provides an introduction to more advanced topics including measure theory and Lebesgue integration, and offers an invitation to functional analysis. While these advanced topics are not typically encountered until graduate study, the text is designed for the beginner. The author’s engaging style makes advanced topics approachable without sacrificing rigor. The text also consistently encourages the reader to pick up a pencil and take an active part in the learning process. Key features include: - examples to reinforce theory; - thorough explanations preceding definitions, theorems and formal proofs; - illustrations to support intuition; - over 450 exercises designed to develop connections between the concrete and abstract. This text takes students on a journey through the basics of real analysis and provides those who wish to delve deeper the opportunity to experience mathematical ideas that are beyond the standard undergraduate curriculum.

Elements of Classical and Quantum Physics

Author: Michele Cini

Publisher: Springer

ISBN: 3319713302

Category: Science

Page: 390

View: 613

This book presents the basic elements of theoretical physics in a highly accessible, captivating way for university students in the third year of a degree in physics. It covers analytical mechanics, thermodynamics and statistical physics, special and general relativity and non-relativistic quantum theory, fully developing the necessary mathematical methods beyond standard calculus. The central theme is scientific curiosity and the main focus is on the experimental meaning of all quantities and equations. Several recent verifications of General Relativity are presented, with emphasis on the physical effects – why they were predicted to exist and what signals they were seen to produce. Similarly, the basic reasons why superconductors have zero resistance and are perfect diamagnets are pinpointed. Quantum Eraser Experiments and Delayed Choice Experiments are described. Many statements of Quantum Theory are a challenge to common sense and some crucial predictions have often been considered hard to believe and have been tested experimentally. The book examines the EPR paradox, Bell states and teleportation. To show the beauty and richness of the subject, various topics from different areas of Physics are covered. These include: discrete quantum models and lattices (periodic and not), Casimir effect, Anyons, Fano Resonances, the Hanbury Brown and Twiss effect, the Aharonov-Bohm effect, the Meitner-Auger effect, Squeezed Light, the Rabi model, neutrino oscillations, aspects of Quantum Transport, Quantum Pumping, and Berry phases, black holes and cosmological problems.

A Primer on PDEs

Models, Methods, Simulations

Author: Sandro Salsa,Federico Vegni,Anna Zaretti,Paolo Zunino

Publisher: Springer Science & Business Media

ISBN: 8847028620

Category: Mathematics

Page: 489

View: 6906

This book is designed as an advanced undergraduate or a first-year graduate course for students from various disciplines like applied mathematics, physics, engineering. It has evolved while teaching courses on partial differential equations during the last decade at the Politecnico of Milan. The main purpose of these courses was twofold: on the one hand, to train the students to appreciate the interplay between theory and modelling in problems arising in the applied sciences and on the other hand to give them a solid background for numerical methods, such as finite differences and finite elements.

Partial Differential Equations in Action

Complements and Exercises

Author: Sandro Salsa,Gianmaria Verzini

Publisher: Springer

ISBN: 3319154168

Category: Mathematics

Page: 431

View: 9935

This textbook presents problems and exercises at various levels of difficulty in the following areas: Classical Methods in PDEs (diffusion, waves, transport, potential equations); Basic Functional Analysis and Distribution Theory; Variational Formulation of Elliptic Problems; and Weak Formulation for Parabolic Problems and for the Wave Equation. Thanks to the broad variety of exercises with complete solutions, it can be used in all basic and advanced PDE courses.

Advanced Calculus of a Single Variable

Author: Tunc Geveci

Publisher: Springer

ISBN: 331927807X

Category: Mathematics

Page: 382

View: 1702

This advanced undergraduate textbook is based on a one-semester course on single variable calculus that the author has been teaching at San Diego State University for many years. The aim of this classroom-tested book is to deliver a rigorous discussion of the concepts and theorems that are dealt with informally in the first two semesters of a beginning calculus course. As such, students are expected to gain a deeper understanding of the fundamental concepts of calculus, such as limits (with an emphasis on ε-δ definitions), continuity (including an appreciation of the difference between mere pointwise and uniform continuity), the derivative (with rigorous proofs of various versions of L’Hôpital’s rule) and the Riemann integral (discussing improper integrals in-depth, including the comparison and Dirichlet tests). Success in this course is expected to prepare students for more advanced courses in real and complex analysis and this book will help to accomplish this. The first semester of advanced calculus can be followed by a rigorous course in multivariable calculus and an introductory real analysis course that treats the Lebesgue integral and metric spaces, with special emphasis on Banach and Hilbert spaces.

Solved Problems in Quantum and Statistical Mechanics

Author: Michele Cini,Francesco Fucito,Mauro Sbragaglia

Publisher: Springer Science & Business Media

ISBN: 9788847023154

Category: Science

Page: 399

View: 2719

This textbook is the result of many years of teaching quantum and statistical mechanics, drawing on exercises and exam papers used on courses taught by the authors. The subjects of the exercises have been carefully selected to cover all the material which is most needed by students. Each exercise is carefully solved in full details, explaining the theory behind the solution with particular care for those issues that students often find difficult, or which are often neglected in other books on the subject. The exercises in this book never require extensive calculations but tend to be somewhat unusual and force the solver to think about the problem starting from first principles, rather than by analogy with some previously solved exercise.

Problems in Real Analysis

Advanced Calculus on the Real Axis

Author: Teodora-Liliana Radulescu,Vicentiu D. Radulescu,Titu Andreescu

Publisher: Springer Science & Business Media

ISBN: 0387773797

Category: Mathematics

Page: 452

View: 2211

Problems in Real Analysis: Advanced Calculus on the Real Axis features a comprehensive collection of challenging problems in mathematical analysis that aim to promote creative, non-standard techniques for solving problems. This self-contained text offers a host of new mathematical tools and strategies which develop a connection between analysis and other mathematical disciplines, such as physics and engineering. A broad view of mathematics is presented throughout; the text is excellent for the classroom or self-study. It is intended for undergraduate and graduate students in mathematics, as well as for researchers engaged in the interplay between applied analysis, mathematical physics, and numerical analysis.

Spectral Theory and Quantum Mechanics

With an Introduction to the Algebraic Formulation

Author: Valter Moretti

Publisher: Springer Science & Business Media

ISBN: 8847028353

Category: Mathematics

Page: 728

View: 8141

This book pursues the accurate study of the mathematical foundations of Quantum Theories. It may be considered an introductory text on linear functional analysis with a focus on Hilbert spaces. Specific attention is given to spectral theory features that are relevant in physics. Having left the physical phenomenology in the background, it is the formal and logical aspects of the theory that are privileged. Another not lesser purpose is to collect in one place a number of useful rigorous statements on the mathematical structure of Quantum Mechanics, including some elementary, yet fundamental, results on the Algebraic Formulation of Quantum Theories. In the attempt to reach out to Master's or PhD students, both in physics and mathematics, the material is designed to be self-contained: it includes a summary of point-set topology and abstract measure theory, together with an appendix on differential geometry. The book should benefit established researchers to organise and present the profusion of advanced material disseminated in the literature. Most chapters are accompanied by exercises, many of which are solved explicitly.