Confidence, Likelihood, Probability

Statistical Inference with Confidence Distributions

Author: Tore Schweder,Nils Lid Hjort

Publisher: Cambridge University Press

ISBN: 1316445054

Category: Mathematics

Page: N.A

View: 9608

This lively book lays out a methodology of confidence distributions and puts them through their paces. Among other merits, they lead to optimal combinations of confidence from different sources of information, and they can make complex models amenable to objective and indeed prior-free analysis for less subjectively inclined statisticians. The generous mixture of theory, illustrations, applications and exercises is suitable for statisticians at all levels of experience, as well as for data-oriented scientists. Some confidence distributions are less dispersed than their competitors. This concept leads to a theory of risk functions and comparisons for distributions of confidence. Neyman–Pearson type theorems leading to optimal confidence are developed and richly illustrated. Exact and optimal confidence distribution is the gold standard for inferred epistemic distributions. Confidence distributions and likelihood functions are intertwined, allowing prior distributions to be made part of the likelihood. Meta-analysis in likelihood terms is developed and taken beyond traditional methods, suiting it in particular to combining information across diverse data sources.

Computer Age Statistical Inference

Algorithms, Evidence, and Data Science

Author: Bradley Efron,Trevor Hastie

Publisher: Cambridge University Press

ISBN: 1108107958

Category: Mathematics

Page: N.A

View: 9970

The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.

Saddlepoint Approximations with Applications

Author: Ronald W. Butler

Publisher: Cambridge University Press

ISBN: 1139466518

Category: Mathematics

Page: N.A

View: 5732

Modern statistical methods use complex, sophisticated models that can lead to intractable computations. Saddlepoint approximations can be the answer. Written from the user's point of view, this book explains in clear language how such approximate probability computations are made, taking readers from the very beginnings to current applications. The core material is presented in chapters 1-6 at an elementary mathematical level. Chapters 7-9 then give a highly readable account of higher-order asymptotic inference. Later chapters address areas where saddlepoint methods have had substantial impact: multivariate testing, stochastic systems and applied probability, bootstrap implementation in the transform domain, and Bayesian computation and inference. No previous background in the area is required. Data examples from real applications demonstrate the practical value of the methods. Ideal for graduate students and researchers in statistics, biostatistics, electrical engineering, econometrics, and applied mathematics, this is both an entry-level text and a valuable reference.

Essentials of Statistical Inference

Author: G. A. Young,R. L. Smith

Publisher: Cambridge University Press

ISBN: 9780521839716

Category: Mathematics

Page: 225

View: 9002

Aimed at advanced undergraduate and graduate students in mathematics and related disciplines, this book presents the concepts and results underlying the Bayesian, frequentist and Fisherian approaches, with particular emphasis on the contrasts between them. Computational ideas are explained, as well as basic mathematical theory. Written in a lucid and informal style, this concise text provides both basic material on the main approaches to inference, as well as more advanced material on developments in statistical theory, including: material on Bayesian computation, such as MCMC, higher-order likelihood theory, predictive inference, bootstrap methods and conditional inference. It contains numerous extended examples of the application of formal inference techniques to real data, as well as historical commentary on the development of the subject. Throughout, the text concentrates on concepts, rather than mathematical detail, while maintaining appropriate levels of formality. Each chapter ends with a set of accessible problems.

Large-Scale Inference

Empirical Bayes Methods for Estimation, Testing, and Prediction

Author: Bradley Efron

Publisher: Cambridge University Press

ISBN: 1139492136

Category: Mathematics

Page: N.A

View: 8038

We live in a new age for statistical inference, where modern scientific technology such as microarrays and fMRI machines routinely produce thousands and sometimes millions of parallel data sets, each with its own estimation or testing problem. Doing thousands of problems at once is more than repeated application of classical methods. Taking an empirical Bayes approach, Bradley Efron, inventor of the bootstrap, shows how information accrues across problems in a way that combines Bayesian and frequentist ideas. Estimation, testing and prediction blend in this framework, producing opportunities for new methodologies of increased power. New difficulties also arise, easily leading to flawed inferences. This book takes a careful look at both the promise and pitfalls of large-scale statistical inference, with particular attention to false discovery rates, the most successful of the new statistical techniques. Emphasis is on the inferential ideas underlying technical developments, illustrated using a large number of real examples.

Nonparametric Estimation under Shape Constraints

Author: Piet Groeneboom,Geurt Jongbloed,Jon A. Wellner

Publisher: Cambridge University Press

ISBN: 0521864011

Category: Business & Economics

Page: 428

View: 4126

This book introduces basic concepts of shape constrained inference and guides the reader to current developments in the subject.

Empirical Likelihood

Author: Art B. Owen

Publisher: CRC Press

ISBN: 1420036157

Category: Mathematics

Page: 304

View: 7570

Empirical likelihood provides inferences whose validity does not depend on specifying a parametric model for the data. Because it uses a likelihood, the method has certain inherent advantages over resampling methods: it uses the data to determine the shape of the confidence regions, and it makes it easy to combined data from multiple sources. It also facilitates incorporating side information, and it simplifies accounting for censored, truncated, or biased sampling. One of the first books published on the subject, Empirical Likelihood offers an in-depth treatment of this method for constructing confidence regions and testing hypotheses. The author applies empirical likelihood to a range of problems, from those as simple as setting a confidence region for a univariate mean under IID sampling, to problems defined through smooth functions of means, regression models, generalized linear models, estimating equations, or kernel smooths, and to sampling with non-identically distributed data. Abundant figures offer visual reinforcement of the concepts and techniques. Examples from a variety of disciplines and detailed descriptions of algorithms-also posted on a companion Web site at-illustrate the methods in practice. Exercises help readers to understand and apply the methods. The method of empirical likelihood is now attracting serious attention from researchers in econometrics and biostatistics, as well as from statisticians. This book is your opportunity to explore its foundations, its advantages, and its application to a myriad of practical problems.

Probability Theory

The Logic of Science

Author: E. T. Jaynes

Publisher: Cambridge University Press

ISBN: 1139435167

Category: Science

Page: N.A

View: 7495

The standard rules of probability can be interpreted as uniquely valid principles in logic. In this book, E. T. Jaynes dispels the imaginary distinction between 'probability theory' and 'statistical inference', leaving a logical unity and simplicity, which provides greater technical power and flexibility in applications. This book goes beyond the conventional mathematics of probability theory, viewing the subject in a wider context. New results are discussed, along with applications of probability theory to a wide variety of problems in physics, mathematics, economics, chemistry and biology. It contains many exercises and problems, and is suitable for use as a textbook on graduate level courses involving data analysis. The material is aimed at readers who are already familiar with applied mathematics at an advanced undergraduate level or higher. The book will be of interest to scientists working in any area where inference from incomplete information is necessary.

The Skew-Normal and Related Families

Author: Adelchi Azzalini,Antonella Capitanio

Publisher: Cambridge University Press

ISBN: 1107029279

Category: Business & Economics

Page: 270

View: 8762

The standard resource for statisticians and applied researchers. Accessible to the wide range of researchers who use statistical modelling techniques.

Bayesian Nonparametrics

Author: Nils Lid Hjort,Chris Holmes,Peter Müller,Stephen G. Walker

Publisher: Cambridge University Press

ISBN: 1139484605

Category: Mathematics

Page: N.A

View: 7338

Bayesian nonparametrics works - theoretically, computationally. The theory provides highly flexible models whose complexity grows appropriately with the amount of data. Computational issues, though challenging, are no longer intractable. All that is needed is an entry point: this intelligent book is the perfect guide to what can seem a forbidding landscape. Tutorial chapters by Ghosal, Lijoi and Prünster, Teh and Jordan, and Dunson advance from theory, to basic models and hierarchical modeling, to applications and implementation, particularly in computer science and biostatistics. These are complemented by companion chapters by the editors and Griffin and Quintana, providing additional models, examining computational issues, identifying future growth areas, and giving links to related topics. This coherent text gives ready access both to underlying principles and to state-of-the-art practice. Specific examples are drawn from information retrieval, NLP, machine vision, computational biology, biostatistics, and bioinformatics.

Multivariate T-Distributions and Their Applications

Author: Samuel Kotz,Saralees Nadarajah

Publisher: Cambridge University Press

ISBN: 9780521826549

Category: Mathematics

Page: 272

View: 3794

Almost all the results available in the literature on multivariate t-distributions published in the last 50 years are now collected together in this comprehensive reference. Because these distributions are becoming more prominent in many applications, this book is a must for any serious researcher or consultant working in multivariate analysis and statistical distributions. Much of this material has never before appeared in book form. The first part of the book emphasizes theoretical results of a probabilistic nature. In the second part of the book, these are supplemented by a variety of statistical aspects. Various generalizations and applications are dealt with in the final chapters. The material on estimation and regression models is of special value for practitioners in statistics and economics. A comprehensive bibliography of over 350 references is included.

Predictive Statistics

Analysis and Inference beyond Models

Author: Bertrand S. Clarke,Jennifer L. Clarke

Publisher: Cambridge University Press

ISBN: 1107028280

Category: Business & Economics

Page: 652

View: 8696

A bold retooling of statistics to focus directly on predictive performance with traditional and contemporary data types and methodologies.

Robustness in Econometrics

Author: Vladik Kreinovich,Songsak Sriboonchitta,Van-Nam Huynh

Publisher: Springer

ISBN: 3319507427

Category: Computers

Page: 705

View: 4800

This book presents recent research on robustness in econometrics. Robust data processing techniques – i.e., techniques that yield results minimally affected by outliers – and their applications to real-life economic and financial situations are the main focus of this book. The book also discusses applications of more traditional statistical techniques to econometric problems. Econometrics is a branch of economics that uses mathematical (especially statistical) methods to analyze economic systems, to forecast economic and financial dynamics, and to develop strategies for achieving desirable economic performance. In day-by-day data, we often encounter outliers that do not reflect the long-term economic trends, e.g., unexpected and abrupt fluctuations. As such, it is important to develop robust data processing techniques that can accommodate these fluctuations.

Asymptotic Statistics

Author: A. W. van der Vaart

Publisher: Cambridge University Press

ISBN: 9780521784504

Category: Mathematics

Page: 443

View: 9693

A mathematically rigorous, practical introduction presenting standard topics plus research.

Modern Statistical Methods for Astronomy

With R Applications

Author: Eric D. Feigelson,G. Jogesh Babu

Publisher: Cambridge University Press

ISBN: 052176727X

Category: Science

Page: 476

View: 4446

"Modern astronomical research is beset with a vast range of statistical challenges, ranging from reducing data from megadatasets to characterizing an amazing variety of variable celestial objects or testing astrophysical theory. Yet most astronomers still use a narrow suite of traditional statistical methods. Linking astronomy to the world of modern statistics, this volume is a unique resource, introducing astronomers to advanced statistics through ready-to-use code in the public-domain R statistical software environment"--

Statistical Inference

An Integrated Bayesian/Likelihood Approach

Author: Murray Aitkin

Publisher: CRC Press

ISBN: 1420093444

Category: Mathematics

Page: 254

View: 7935

Filling a gap in current Bayesian theory, Statistical Inference: An Integrated Bayesian/Likelihood Approach presents a unified Bayesian treatment of parameter inference and model comparisons that can be used with simple diffuse prior specifications. This novel approach provides new solutions to difficult model comparison problems and offers direct Bayesian counterparts of frequentist t-tests and other standard statistical methods for hypothesis testing. After an overview of the competing theories of statistical inference, the book introduces the Bayes/likelihood approach used throughout. It presents Bayesian versions of one- and two-sample t-tests, along with the corresponding normal variance tests. The author then thoroughly discusses the use of the multinomial model and noninformative Dirichlet priors in "model-free" or nonparametric Bayesian survey analysis, before covering normal regression and analysis of variance. In the chapter on binomial and multinomial data, he gives alternatives, based on Bayesian analyses, to current frequentist nonparametric methods. The text concludes with new goodness-of-fit methods for assessing parametric models and a discussion of two-level variance component models and finite mixtures. Emphasizing the principles of Bayesian inference and Bayesian model comparison, this book develops a unique methodology for solving challenging inference problems. It also includes a concise review of the various approaches to inference.

Bootstrap Methods and Their Application

Author: A. C. Davison,D. V. Hinkley

Publisher: Cambridge University Press

ISBN: 9780521574716

Category: Computers

Page: 582

View: 3439

This book gives a broad and up-to-date coverage of bootstrap methods, with numerous applied examples, developed in a coherent way with the necessary theoretical basis. Applications include stratified data; finite populations; censored and missing data; linear, nonlinear, and smooth regression models; classification; time series and spatial problems. Special features of the book include: extensive discussion of significance tests and confidence intervals; material on various diagnostic methods; and methods for efficient computation, including improved Monte Carlo simulation. Each chapter includes both practical and theoretical exercises. Included with the book is a disk of purpose-written S-Plus programs for implementing the methods described in the text. Computer algorithms are clearly described, and computer code is included on a 3-inch, 1.4M disk for use with IBM computers and compatible machines. Users must have the S-Plus computer application. Author resource page:

Statistical Analysis in Climate Research

Author: Hans von Storch,Francis W. Zwiers

Publisher: Cambridge University Press

ISBN: 1139425099

Category: Science

Page: N.A

View: 6847

Climatology is, to a large degree, the study of the statistics of our climate. The powerful tools of mathematical statistics therefore find wide application in climatological research. The purpose of this book is to help the climatologist understand the basic precepts of the statistician's art and to provide some of the background needed to apply statistical methodology correctly and usefully. The book is self contained: introductory material, standard advanced techniques, and the specialised techniques used specifically by climatologists are all contained within this one source. There are a wealth of real-world examples drawn from the climate literature to demonstrate the need, power and pitfalls of statistical analysis in climate research. Suitable for graduate courses on statistics for climatic, atmospheric and oceanic science, this book will also be valuable as a reference source for researchers in climatology, meteorology, atmospheric science, and oceanography.

Fundamentals of Nonparametric Bayesian Inference

Author: Subhashis Ghosal,Aad van der Vaart

Publisher: Cambridge University Press

ISBN: 0521878268

Category: Business & Economics

Page: 670

View: 8255

Bayesian nonparametrics comes of age with this landmark text synthesizing theory, methodology and computation.