Core Statistics

Author: Simon Wood

Publisher: Cambridge University Press

ISBN: 1107071054

Category: Business & Economics

Page: 258

View: 3425

Core Statistics is a compact starter course on the theory, models, and computational tools needed to make informed use of powerful statistical methods.

Theoretical Statistics

Topics for a Core Course

Author: Robert W. Keener

Publisher: Springer Science & Business Media

ISBN: 9780387938394

Category: Mathematics

Page: 538

View: 5849

Intended as the text for a sequence of advanced courses, this book covers major topics in theoretical statistics in a concise and rigorous fashion. The discussion assumes a background in advanced calculus, linear algebra, probability, and some analysis and topology. Measure theory is used, but the notation and basic results needed are presented in an initial chapter on probability, so prior knowledge of these topics is not essential. The presentation is designed to expose students to as many of the central ideas and topics in the discipline as possible, balancing various approaches to inference as well as exact, numerical, and large sample methods. Moving beyond more standard material, the book includes chapters introducing bootstrap methods, nonparametric regression, equivariant estimation, empirical Bayes, and sequential design and analysis. The book has a rich collection of exercises. Several of them illustrate how the theory developed in the book may be used in various applications. Solutions to many of the exercises are included in an appendix.

A Course in Mathematical Statistics and Large Sample Theory

Author: Rabi Bhattacharya,Lizhen Lin,Victor Patrangenaru

Publisher: Springer

ISBN: 1493940325

Category: Mathematics

Page: 389

View: 9774

This graduate-level textbook is primarily aimed at graduate students of statistics, mathematics, science, and engineering who have had an undergraduate course in statistics, an upper division course in analysis, and some acquaintance with measure theoretic probability. It provides a rigorous presentation of the core of mathematical statistics. Part I of this book constitutes a one-semester course on basic parametric mathematical statistics. Part II deals with the large sample theory of statistics - parametric and nonparametric, and its contents may be covered in one semester as well. Part III provides brief accounts of a number of topics of current interest for practitioners and other disciplines whose work involves statistical methods.

Introduction to Malliavin Calculus

Author: David Nualart,Eulalia Nualart

Publisher: Cambridge University Press

ISBN: 1107039126

Category: Business & Economics

Page: 246

View: 2409

This textbook offers a compact introductory course on Malliavin calculus, an active and powerful area of research. It covers recent applications, including density formulas, regularity of probability laws, central and non-central limit theorems for Gaussian functionals, convergence of densities and non-central limit theorems for the local time of Brownian motion. The book also includes a self-contained presentation of Brownian motion and stochastic calculus, as well as Lvy processes and stochastic calculus for jump processes. Accessible to non-experts, the book can be used by graduate students and researchers to develop their mastery of the core techniques necessary for further study.

Mathematical Statistics

Author: Jun Shao

Publisher: Springer Science & Business Media

ISBN: 0387953825

Category: Mathematics

Page: 591

View: 5904

This graduate textbook covers topics in statistical theory essential for graduate students preparing for work on a Ph.D. degree in statistics. The first chapter provides a quick overview of concepts and results in measure-theoretic probability theory that are usefulin statistics. The second chapter introduces some fundamental concepts in statistical decision theory and inference. Chapters 3-7 contain detailed studies on some important topics: unbiased estimation, parametric estimation, nonparametric estimation, hypothesis testing, and confidence sets. A large number of exercises in each chapter provide not only practice problems for students, but also many additional results. In addition to the classical results that are typically covered in a textbook of a similar level, this book introduces some topics in modern statistical theory that have been developed in recent years, such as Markov chain Monte Carlo, quasi-likelihoods, empirical likelihoods, statistical functionals, generalized estimation equations, the jackknife, and the bootstrap. Jun Shao is Professor of Statistics at the University of Wisconsin, Madison. Also available: Jun Shao and Dongsheng Tu, The Jackknife and Bootstrap, Springer- Verlag New York, Inc., 1995, Cloth, 536 pp., 0-387-94515-6.

Lectures on the Poisson Process

Author: Günter Last,Mathew Penrose

Publisher: Cambridge University Press

ISBN: 1107088011

Category: Mathematics

Page: 308

View: 7265

A modern introduction to the Poisson process, with general point processes and random measures, and applications to stochastic geometry.

Stochastic Modeling and Mathematical Statistics

A Text for Statisticians and Quantitative Scientists

Author: Francisco J. Samaniego

Publisher: CRC Press

ISBN: 1466560479

Category: Mathematics

Page: 622

View: 6077

Provides a Solid Foundation for Statistical Modeling and Inference and Demonstrates Its Breadth of Applicability Stochastic Modeling and Mathematical Statistics: A Text for Statisticians and Quantitative Scientists addresses core issues in post-calculus probability and statistics in a way that is useful for statistics and mathematics majors as well as students in the quantitative sciences. The book’s conversational tone, which provides the mathematical justification behind widely used statistical methods in a reader-friendly manner, and the book’s many examples, tutorials, exercises and problems for solution, together constitute an effective resource that students can read and learn from and instructors can count on as a worthy complement to their lectures. Using classroom-tested approaches that engage students in active learning, the text offers instructors the flexibility to control the mathematical level of their course. It contains the mathematical detail that is expected in a course for "majors" but is written in a way that emphasizes the intuitive content in statistical theory and the way theoretical results are used in practice. More than 1000 exercises and problems at varying levels of difficulty and with a broad range of topical focus give instructors many options in assigning homework and provide students with many problems on which to practice and from which to learn.

Theory and Methods of Statistics

Author: P.K. Bhattacharya,Prabir Burman

Publisher: Academic Press

ISBN: 0128041234

Category: Mathematics

Page: 544

View: 4587

Theory and Methods of Statistics covers essential topics for advanced graduate students and professional research statisticians. This comprehensive resource covers many important areas in one manageable volume, including core subjects such as probability theory, mathematical statistics, and linear models, and various special topics, including nonparametrics, curve estimation, multivariate analysis, time series, and resampling. The book presents subjects such as "maximum likelihood and sufficiency," and is written with an intuitive, heuristic approach to build reader comprehension. It also includes many probability inequalities that are not only useful in the context of this text, but also as a resource for investigating convergence of statistical procedures. Codifies foundational information in many core areas of statistics into a comprehensive and definitive resource Serves as an excellent text for select master’s and PhD programs, as well as a professional reference Integrates numerous examples to illustrate advanced concepts Includes many probability inequalities useful for investigating convergence of statistical procedures

Statistical Models

Theory and Practice

Author: David A. Freedman

Publisher: Cambridge University Press

ISBN: 9781139477314

Category: Mathematics

Page: N.A

View: 2097

This lively and engaging book explains the things you have to know in order to read empirical papers in the social and health sciences, as well as the techniques you need to build statistical models of your own. The discussion in the book is organized around published studies, as are many of the exercises. Relevant journal articles are reprinted at the back of the book. Freedman makes a thorough appraisal of the statistical methods in these papers and in a variety of other examples. He illustrates the principles of modelling, and the pitfalls. The discussion shows you how to think about the critical issues - including the connection (or lack of it) between the statistical models and the real phenomena. The book is written for advanced undergraduates and beginning graduate students in statistics, as well as students and professionals in the social and health sciences.

Mathematical Statistics

Basic Ideas and Selected Topics

Author: Peter J. Bickel,Kjell A. Doksum

Publisher: CRC Press

ISBN: 1498722709

Category: Business & Economics

Page: 465

View: 8311

Mathematical Statistics: Basic Ideas and Selected Topics, Volume II presents important statistical concepts, methods, and tools not covered in the authors’ previous volume. This second volume focuses on inference in non- and semiparametric models. It not only reexamines the procedures introduced in the first volume from a more sophisticated point of view but also addresses new problems originating from the analysis of estimation of functions and other complex decision procedures and large-scale data analysis. The book covers asymptotic efficiency in semiparametric models from the Le Cam and Fisherian points of view as well as some finite sample size optimality criteria based on Lehmann–Scheffé theory. It develops the theory of semiparametric maximum likelihood estimation with applications to areas such as survival analysis. It also discusses methods of inference based on sieve models and asymptotic testing theory. The remainder of the book is devoted to model and variable selection, Monte Carlo methods, nonparametric curve estimation, and prediction, classification, and machine learning topics. The necessary background material is included in an appendix. Using the tools and methods developed in this textbook, students will be ready for advanced research in modern statistics. Numerous examples illustrate statistical modeling and inference concepts while end-of-chapter problems reinforce elementary concepts and introduce important new topics. As in Volume I, measure theory is not required for understanding. Check out Volume I for fundamental, classical statistical concepts leading to the material in this volume.

Handbook of Statistics

Computational Statistics with R

Author: N.A

Publisher: Elsevier

ISBN: 044463441X

Category: Mathematics

Page: 412

View: 1443

R is open source statistical computing software. Since the R core group was formed in 1997, R has been extended by a very large number of packages with extensive documentation along with examples freely available on the internet. It offers a large number of statistical and numerical methods and graphical tools and visualization of extraordinarily high quality. R was recently ranked in 14th place by the Transparent Language Popularity Index and 6th as a scripting language, after PHP, Python, and Perl. The book is designed so that it can be used right away by novices while appealing to experienced users as well. Each article begins with a data example that can be downloaded directly from the R website. Data analysis questions are articulated following the presentation of the data. The necessary R commands are spelled out and executed and the output is presented and discussed. Other examples of data sets with a different flavor and different set of commands but following the theme of the article are presented as well. Each chapter predents a hands-on-experience. R has superb graphical outlays and the book brings out the essentials in this arena. The end user can benefit immensely by applying the graphics to enhance research findings. The core statistical methodologies such as regression, survival analysis, and discrete data are all covered. Addresses data examples that can be downloaded directly from the R website No other source is needed to gain practical experience Focus on the essentials in graphical outlays

Applied Probability and Statistics

Author: Mario Lefebvre

Publisher: Springer Science & Business Media

ISBN: 0387285059

Category: Mathematics

Page: 358

View: 5527

This book moves systematically through the topic of applied probability from an introductory chapter to such topics as random variables and vectors, stochastic processes, estimation, testing and regression. The topics are well chosen and the presentation is enriched by many examples from real life. Each chapter concludes with many original, solved and unsolved problems and hundreds of multiple choice questions, enabling those unfamiliar with the topics to master them. Additionally appealing are historical notes on the mathematicians mentioned throughout, and a useful bibliography. A distinguishing character of the book is its thorough and succinct handling of the varied topics.

Computer Age Statistical Inference

Algorithms, Evidence, and Data Science

Author: Bradley Efron,Trevor Hastie

Publisher: Cambridge University Press

ISBN: 1108107958

Category: Mathematics

Page: N.A

View: 8747

The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.

The Skew-Normal and Related Families

Author: Adelchi Azzalini,Antonella Capitanio

Publisher: Cambridge University Press

ISBN: 1107029279

Category: Business & Economics

Page: 270

View: 1594

The standard resource for statisticians and applied researchers. Accessible to the wide range of researchers who use statistical modelling techniques.

Basic Concepts in Computational Physics

Author: Benjamin A. Stickler,Ewald Schachinger

Publisher: Springer

ISBN: 3319272659

Category: Science

Page: 409

View: 6368

This new edition is a concise introduction to the basic methods of computational physics. Readers will discover the benefits of numerical methods for solving complex mathematical problems and for the direct simulation of physical processes. The book is divided into two main parts: Deterministic methods and stochastic methods in computational physics. Based on concrete problems, the first part discusses numerical differentiation and integration, as well as the treatment of ordinary differential equations. This is extended by a brief introduction to the numerics of partial differential equations. The second part deals with the generation of random numbers, summarizes the basics of stochastics, and subsequently introduces Monte-Carlo (MC) methods. Specific emphasis is on MARKOV chain MC algorithms. The final two chapters discuss data analysis and stochastic optimization. All this is again motivated and augmented by applications from physics. In addition, the book offers a number of appendices to provide the reader with information on topics not discussed in the main text. Numerous problems with worked-out solutions, chapter introductions and summaries, together with a clear and application-oriented style support the reader. Ready to use C++ codes are provided online.

Essential Mathematics and Statistics for Forensic Science

Author: Craig Adam

Publisher: John Wiley & Sons

ISBN: 1119964180

Category: Medical

Page: 366

View: 5262

This text is an accessible, student-friendly introduction to the wide range of mathematical and statistical tools needed by the forensic scientist in the analysis, interpretation and presentation of experimental measurements. From a basis of high school mathematics, the book develops essential quantitative analysis techniques within the context of a broad range of forensic applications. This clearly structured text focuses on developing core mathematical skills together with an understanding of the calculations associated with the analysis of experimental work, including an emphasis on the use of graphs and the evaluation of uncertainties. Through a broad study of probability and statistics, the reader is led ultimately to the use of Bayesian approaches to the evaluation of evidence within the court. In every section, forensic applications such as ballistics trajectories, post-mortem cooling, aspects of forensic pharmacokinetics, the matching of glass evidence, the formation of bloodstains and the interpretation of DNA profiles are discussed and examples of calculations are worked through. In every chapter there are numerous self-assessment problems to aid student learning. Its broad scope and forensically focused coverage make this book an essential text for students embarking on any degree course in forensic science or forensic analysis, as well as an invaluable reference for post-graduate students and forensic professionals. Key features: Offers a unique mix of mathematics and statistics topics, specifically tailored to a forensic science undergraduate degree. All topics illustrated with examples from the forensic science discipline. Written in an accessible, student-friendly way to engage interest and enhance learning and confidence. Assumes only a basic high-school level prior mathematical knowledge.

Mathematical Statistics with Applications in R

Author: Kandethody M. Ramachandran,Chris P. Tsokos

Publisher: Elsevier

ISBN: 012417132X

Category: Mathematics

Page: 826

View: 4663

Mathematical Statistics with Applications in R, Second Edition, offers a modern calculus-based theoretical introduction to mathematical statistics and applications. The book covers many modern statistical computational and simulation concepts that are not covered in other texts, such as the Jackknife, bootstrap methods, the EM algorithms, and Markov chain Monte Carlo (MCMC) methods such as the Metropolis algorithm, Metropolis-Hastings algorithm and the Gibbs sampler. By combining the discussion on the theory of statistics with a wealth of real-world applications, the book helps students to approach statistical problem solving in a logical manner. This book provides a step-by-step procedure to solve real problems, making the topic more accessible. It includes goodness of fit methods to identify the probability distribution that characterizes the probabilistic behavior or a given set of data. Exercises as well as practical, real-world chapter projects are included, and each chapter has an optional section on using Minitab, SPSS and SAS commands. The text also boasts a wide array of coverage of ANOVA, nonparametric, MCMC, Bayesian and empirical methods; solutions to selected problems; data sets; and an image bank for students. Advanced undergraduate and graduate students taking a one or two semester mathematical statistics course will find this book extremely useful in their studies. Step-by-step procedure to solve real problems, making the topic more accessible Exercises blend theory and modern applications Practical, real-world chapter projects Provides an optional section in each chapter on using Minitab, SPSS and SAS commands Wide array of coverage of ANOVA, Nonparametric, MCMC, Bayesian and empirical methods

Statistical Models

Author: A. C. Davison

Publisher: Cambridge University Press

ISBN: 1139437410

Category: Mathematics

Page: N.A

View: 6544

Models and likelihood are the backbone of modern statistics. This 2003 book gives an integrated development of these topics that blends theory and practice, intended for advanced undergraduate and graduate students, researchers and practitioners. Its breadth is unrivaled, with sections on survival analysis, missing data, Markov chains, Markov random fields, point processes, graphical models, simulation and Markov chain Monte Carlo, estimating functions, asymptotic approximations, local likelihood and spline regressions as well as on more standard topics such as likelihood and linear and generalized linear models. Each chapter contains a wide range of problems and exercises. Practicals in the S language designed to build computing and data analysis skills, and a library of data sets to accompany the book, are available over the Web.

Probability for Statistics and Machine Learning

Fundamentals and Advanced Topics

Author: Anirban DasGupta

Publisher: Springer Science & Business Media

ISBN: 9781441996343

Category: Mathematics

Page: 784

View: 774

This book provides a versatile and lucid treatment of classic as well as modern probability theory, while integrating them with core topics in statistical theory and also some key tools in machine learning. It is written in an extremely accessible style, with elaborate motivating discussions and numerous worked out examples and exercises. The book has 20 chapters on a wide range of topics, 423 worked out examples, and 808 exercises. It is unique in its unification of probability and statistics, its coverage and its superb exercise sets, detailed bibliography, and in its substantive treatment of many topics of current importance. This book can be used as a text for a year long graduate course in statistics, computer science, or mathematics, for self-study, and as an invaluable research reference on probabiliity and its applications. Particularly worth mentioning are the treatments of distribution theory, asymptotics, simulation and Markov Chain Monte Carlo, Markov chains and martingales, Gaussian processes, VC theory, probability metrics, large deviations, bootstrap, the EM algorithm, confidence intervals, maximum likelihood and Bayes estimates, exponential families, kernels, and Hilbert spaces, and a self contained complete review of univariate probability.

Applied Stochastic Differential Equations

Author: Simo Särkkä,Arno Solin

Publisher: Cambridge University Press

ISBN: 9781316649466

Category: Mathematics

Page: 300

View: 7570

Stochastic differential equations are differential equations whose solutions are stochastic processes. They exhibit appealing mathematical properties that are useful in modeling uncertainties and noisy phenomena in many disciplines. This book is motivated by applications of stochastic differential equations in target tracking and medical technology and, in particular, their use in methodologies such as filtering, smoothing, parameter estimation, and machine learning. It builds an intuitive hands-on understanding of what stochastic differential equations are all about, but also covers the essentials of Itô calculus, the central theorems in the field, and such approximation schemes as stochastic Runge-Kutta. Greater emphasis is given to solution methods than to analysis of theoretical properties of the equations. The book's practical approach assumes only prior understanding of ordinary differential equations. The numerous worked examples and end-of-chapter exercises include application-driven derivations and computational assignments. MATLAB/Octave source code is available for download, promoting hands-on work with the methods.