A Course in Analysis

Vol. II: Differentiation and Integration of Functions of Several Variables, Vector Calculus

Author: Niels Jacob,Kristian P Evans

Publisher: World Scientific Publishing Company

ISBN: 9813140984

Category: Mathematics

Page: 788

View: 2830

This is the second volume of "A Course in Analysis" and it is devoted to the study of mappings between subsets of Euclidean spaces. The metric, hence the topological structure is discussed as well as the continuity of mappings. This is followed by introducing partial derivatives of real-valued functions and the differential of mappings. Many chapters deal with applications, in particular to geometry (parametric curves and surfaces, convexity), but topics such as extreme values and Lagrange multipliers, or curvilinear coordinates are considered too. On the more abstract side results such as the Stone–Weierstrass theorem or the Arzela–Ascoli theorem are proved in detail. The first part ends with a rigorous treatment of line integrals. The second part handles iterated and volume integrals for real-valued functions. Here we develop the Riemann (–Darboux–Jordan) theory. A whole chapter is devoted to boundaries and Jordan measurability of domains. We also handle in detail improper integrals and give some of their applications. The final part of this volume takes up a first discussion of vector calculus. Here we present a working mathematician's version of Green's, Gauss' and Stokes' theorem. Again some emphasis is given to applications, for example to the study of partial differential equations. At the same time we prepare the student to understand why these theorems and related objects such as surface integrals demand a much more advanced theory which we will develop in later volumes. This volume offers more than 260 problems solved in complete detail which should be of great benefit to every serious student.

A Course in Analysis

Volume I: Introductory Calculus, Analysis of Functions of One Real Variable

Author: Niels Jacob,Kristian P Evans

Publisher: World Scientific Publishing Company

ISBN: 9814689106

Category: Mathematics

Page: 768

View: 5414

Part 1 begins with an overview of properties of the real numbers and starts to introduce the notions of set theory. The absolute value and in particular inequalities are considered in great detail before functions and their basic properties are handled. From this the authors move to differential and integral calculus. Many examples are discussed. Proofs not depending on a deeper understanding of the completeness of the real numbers are provided. As a typical calculus module, this part is thought as an interface from school to university analysis. Part 2 returns to the structure of the real numbers, most of all to the problem of their completeness which is discussed in great depth. Once the completeness of the real line is settled the authors revisit the main results of Part 1 and provide complete proofs. Moreover they develop differential and integral calculus on a rigorous basis much further by discussing uniform convergence and the interchanging of limits, infinite series (including Taylor series) and infinite products, improper integrals and the gamma function. In addition they discussed in more detail as usual monotone and convex functions. Finally, the authors supply a number of Appendices, among them Appendices on basic mathematical logic, more on set theory, the Peano axioms and mathematical induction, and on further discussions of the completeness of the real numbers. Remarkably, Volume I contains ca. 360 problems with complete, detailed solutions.

Functions of Several Variables

Author: Wendell H Fleming

Publisher: Springer Science & Business Media

ISBN: 9780387902067

Category: Mathematics

Page: 412

View: 9746

This new edition, like the first, presents a thorough introduction to differential and integral calculus, including the integration of differential forms on manifolds. However, an additional chapter on elementary topology makes the book more complete as an advanced calculus text, and sections have been added introducing physical applications in thermodynamics, fluid dynamics, and classical rigid body mechanics.

A Course in Multivariable Calculus and Analysis

Author: Sudhir R. Ghorpade,Balmohan V. Limaye

Publisher: Springer Science & Business Media

ISBN: 1441916210

Category: Mathematics

Page: 475

View: 4012

This self-contained textbook gives a thorough exposition of multivariable calculus. The emphasis is on correlating general concepts and results of multivariable calculus with their counterparts in one-variable calculus. Further, the book includes genuine analogues of basic results in one-variable calculus, such as the mean value theorem and the fundamental theorem of calculus. This book is distinguished from others on the subject: it examines topics not typically covered, such as monotonicity, bimonotonicity, and convexity, together with their relation to partial differentiation, cubature rules for approximate evaluation of double integrals, and conditional as well as unconditional convergence of double series and improper double integrals. Each chapter contains detailed proofs of relevant results, along with numerous examples and a wide collection of exercises of varying degrees of difficulty, making the book useful to undergraduate and graduate students alike.

Calculus of Several Variables

Author: Serge Lang

Publisher: Springer Science & Business Media

ISBN: 1461210682

Category: Mathematics

Page: 619

View: 2299

This new, revised edition covers all of the basic topics in calculus of several variables, including vectors, curves, functions of several variables, gradient, tangent plane, maxima and minima, potential functions, curve integrals, Green’s theorem, multiple integrals, surface integrals, Stokes’ theorem, and the inverse mapping theorem and its consequences. It includes many completely worked-out problems.

Multivariable Calculus

Author: L. Corwin

Publisher: CRC Press

ISBN: 9780824769628

Category: Mathematics

Page: 546

View: 3988

Advanced Calculus

Revised

Author: Lynn Harold Loomis,Shlomo Sternberg

Publisher: World Scientific Publishing Company

ISBN: 9814583952

Category: Mathematics

Page: 596

View: 8458

An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades. This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis. The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives. In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.

A Course in Multivariable Calculus and Analysis

Author: Sudhir R. Ghorpade,Balmohan V. Limaye

Publisher: Springer Science & Business Media

ISBN: 1441916202

Category: Mathematics

Page: 475

View: 6401

This self-contained textbook gives a thorough exposition of multivariable calculus. The emphasis is on correlating general concepts and results of multivariable calculus with their counterparts in one-variable calculus. Further, the book includes genuine analogues of basic results in one-variable calculus, such as the mean value theorem and the fundamental theorem of calculus. This book is distinguished from others on the subject: it examines topics not typically covered, such as monotonicity, bimonotonicity, and convexity, together with their relation to partial differentiation, cubature rules for approximate evaluation of double integrals, and conditional as well as unconditional convergence of double series and improper double integrals. Each chapter contains detailed proofs of relevant results, along with numerous examples and a wide collection of exercises of varying degrees of difficulty, making the book useful to undergraduate and graduate students alike.

Analysis in Vector Spaces

Author: Mustafa A. Akcoglu,Paul F. A. Bartha,Dzung Minh Ha

Publisher: John Wiley & Sons

ISBN: 1118164598

Category: Mathematics

Page: 480

View: 5900

A rigorous introduction to calculus in vector spaces The concepts and theorems of advanced calculus combined with related computational methods are essential to understanding nearly all areas of quantitative science. Analysis in Vector Spaces presents the central results of this classic subject through rigorous arguments, discussions, and examples. The book aims to cultivate not only knowledge of the major theoretical results, but also the geometric intuition needed for both mathematical problem-solving and modeling in the formal sciences. The authors begin with an outline of key concepts, terminology, and notation and also provide a basic introduction to set theory, the properties of real numbers, and a review of linear algebra. An elegant approach to eigenvector problems and the spectral theorem sets the stage for later results on volume and integration. Subsequent chapters present the major results of differential and integral calculus of several variables as well as the theory of manifolds. Additional topical coverage includes: Sets and functions Real numbers Vector functions Normed vector spaces First- and higher-order derivatives Diffeomorphisms and manifolds Multiple integrals Integration on manifolds Stokes' theorem Basic point set topology Numerous examples and exercises are provided in each chapter to reinforce new concepts and to illustrate how results can be applied to additional problems. Furthermore, proofs and examples are presented in a clear style that emphasizes the underlying intuitive ideas. Counterexamples are provided throughout the book to warn against possible mistakes, and extensive appendices outline the construction of real numbers, include a fundamental result about dimension, and present general results about determinants. Assuming only a fundamental understanding of linear algebra and single variable calculus, Analysis in Vector Spaces is an excellent book for a second course in analysis for mathematics, physics, computer science, and engineering majors at the undergraduate and graduate levels. It also serves as a valuable reference for further study in any discipline that requires a firm understanding of mathematical techniques and concepts.

A Matlab Companion for Multivariable Calculus

Author: Jeffery Cooper

Publisher: Elsevier

ISBN: 0080489362

Category: Mathematics

Page: 294

View: 2200

Offering a concise collection of MatLab programs and exercises to accompany a third semester course in multivariable calculus, A MatLab Companion for Multivariable Calculus introduces simple numerical procedures such as numerical differentiation, numerical integration and Newton's method in several variables, thereby allowing students to tackle realistic problems. The many examples show students how to use MatLab effectively and easily in many contexts. Numerous exercises in mathematics and applications areas are presented, graded from routine to more demanding projects requiring some programming. Matlab M-files are provided on the Harcourt/Academic Press web site at http://www.harcourt-ap.com/matlab.html. Computer-oriented material that complements the essential topics in multivariable calculus Main ideas presented with examples of computations and graphics displays using MATLAB Numerous examples of short code in the text, which can be modified for use with the exercises MATLAB files are used to implement graphics displays and contain a collection of mfiles which can serve as demos

Integral, Measure, and Derivative

A Unified Approach

Author: Georgij Evgen'ev?c Shilov,Boris Lazarevich Gurevich

Publisher: Courier Corporation

ISBN: 0486635198

Category: Mathematics

Page: 233

View: 3819

Starting with the useful concept of an elementary integral defined (axiomatically) on a family of elementary functions, this treatment examines the general theory of the integral, Lebesque integral in n space, the Riemann-Stieltjes integral, and more. "The exposition is fresh and sophisticated, and will engage the interest of accomplished mathematicians." — Sci-Tech Book News. 1966 edition.

A Course of Higher Mathematics

Adiwes International Series in Mathematics

Author: V. I. Smirnov

Publisher: Elsevier

ISBN: 1483185087

Category: Mathematics

Page: 644

View: 1571

A Course of Higher Mathematics, Volume II: Advanced Calculus covers the theory of functions of real variable in advanced calculus. This volume is divided into seven chapters and begins with a full discussion of the solution of ordinary differential equations with many applications to the treatment of physical problems. This topic is followed by an account of the properties of multiple integrals and of line integrals, with a valuable section on the theory of measurable sets and of multiple integrals. The subsequent chapters deal with the mathematics necessary to the examination of problems in classical field theories in vector algebra and vector analysis and the elements of differential geometry in three-dimensional space. The final chapters explore the Fourier series and the solution of the partial differential equations of classical mathematical physics. This book will prove useful to advanced mathematics students, engineers, and physicists.

Physics of Fully Ionized Gases

Second Revised Edition

Author: Lyman Spitzer

Publisher: Courier Corporation

ISBN: 0486151581

Category: Science

Page: 192

View: 2689

An introductory course in theoretical physics is the sole prerequisite for this general but simple introduction to the fields of plasma and fusion research. 1962 edition.

An Introduction to Differential Geometry

Author: T. J. Willmore

Publisher: Courier Corporation

ISBN: 0486282104

Category: Mathematics

Page: 336

View: 4786

This text employs vector methods to explore the classical theory of curves and surfaces. Topics include basic theory of tensor algebra, tensor calculus, calculus of differential forms, and elements of Riemannian geometry. 1959 edition.

Atomic Physics: 8th Edition

Author: Max Born

Publisher: Courier Corporation

ISBN: 0486318583

Category: Science

Page: 544

View: 9739

Nobel Laureate's lucid treatment of kinetic theory of gases, elementary particles, nuclear atom, wave-corpuscles, atomic structure and spectral lines, much more. Over 40 appendices, bibliography.

Mathematical Analysis II

Author: Claudio Canuto,Anita Tabacco

Publisher: Springer

ISBN: 3319127578

Category: Mathematics

Page: 559

View: 6569

The purpose of the volume is to provide a support textbook for a second lecture course on Mathematical Analysis. The contents are organised to suit, in particular, students of Engineering, Computer Science and Physics, all areas in which mathematical tools play a crucial role. The basic notions and methods concerning integral and differential calculus for multivariable functions, series of functions and ordinary differential equations are presented in a manner that elicits critical reading and prompts a hands-on approach to concrete applications. The pedagogical layout echoes the one used in the companion text Mathematical Analysis I. The book’s structure has a specifically-designed modular nature, which allows for great flexibility in the preparation of a lecture course on Mathematical Analysis. The style privileges clarity in the exposition and a linear progression through the theory. The material is organised on two levels. The first, reflected in this book, allows students to grasp the essential ideas, familiarise with the corresponding key techniques and find the proofs of the main results. The second level enables the strongly motivated reader to explore further into the subject, by studying also the material contained in the appendices. Definitions are enriched by many examples, which illustrate the properties discussed. A host of solved exercises complete the text, at least half of which guide the reader to the solution. This new edition features additional material with the aim of matching the widest range of educational choices for a second course of Mathematical Analysis.

Handbook of mathematics

Author: Thierry Vialar

Publisher: BoD - Books on Demand

ISBN: 2322009679

Category:

Page: 836

View: 6907

The book consists of XI Parts and 28 Chapters covering all areas of mathematics. It is a tool for scientists, engineers, students, students of many disciplines, teachers, professionals, writers and also for a general reader with an interest in mathematics and in science, as well as for beginners. It provides a wide range of mathematical concepts, definitions, propositions, theorems, and numerous illustrations. Difficulty level can vary depending on chapters, and sustained attention will be required for some. The structure and list of Parts is quite classical: I. Foundations of Mathematics, II. Algebra, III. Number Theory, IV. Geometry, V. Analytic Geometry, VI. Topology, VII. Algebraic Topology, VIII. Analysis, IX. Category Theory, X. Probability and Statistics, XI. Applied Mathematics. Appendices provide useful lists of symbols and tables for ready reference. The purpose and hope is that it will serve the needs of readers, their studies, explorations, work, or researches.

Mathematical Analysis I

Author: V. A. Zorich

Publisher: Springer

ISBN: 3662487926

Category: Mathematics

Page: 616

View: 9676

This second edition of a very popular two-volume work presents a thorough first course in analysis, leading from real numbers to such advanced topics as differential forms on manifolds; asymptotic methods; Fourier, Laplace, and Legendre transforms; elliptic functions; and distributions. Especially notable in this course are the clearly expressed orientation toward the natural sciences and the informal exploration of the essence and the roots of the basic concepts and theorems of calculus. Clarity of exposition is matched by a wealth of instructive exercises, problems, and fresh applications to areas seldom touched on in textbooks on real analysis. The main difference between the second and first editions is the addition of a series of appendices to each volume. There are six of them in the first volume and five in the second. The subjects of these appendices are diverse. They are meant to be useful to both students (in mathematics and physics) and teachers, who may be motivated by different goals. Some of the appendices are surveys, both prospective and retrospective. The final survey establishes important conceptual connections between analysis and other parts of mathematics. The first volume constitutes a complete course in one-variable calculus along with the multivariable differential calculus elucidated in an up-to-date, clear manner, with a pleasant geometric and natural sciences flavor.