Data Mining with Rattle and R

The Art of Excavating Data for Knowledge Discovery

Author: Graham Williams

Publisher: Springer Science & Business Media

ISBN: 144199890X

Category: Mathematics

Page: 374

View: 944

Data mining is the art and science of intelligent data analysis. By building knowledge from information, data mining adds considerable value to the ever increasing stores of electronic data that abound today. In performing data mining many decisions need to be made regarding the choice of methodology, the choice of data, the choice of tools, and the choice of algorithms. Throughout this book the reader is introduced to the basic concepts and some of the more popular algorithms of data mining. With a focus on the hands-on end-to-end process for data mining, Williams guides the reader through various capabilities of the easy to use, free, and open source Rattle Data Mining Software built on the sophisticated R Statistical Software. The focus on doing data mining rather than just reading about data mining is refreshing. The book covers data understanding, data preparation, data refinement, model building, model evaluation, and practical deployment. The reader will learn to rapidly deliver a data mining project using software easily installed for free from the Internet. Coupling Rattle with R delivers a very sophisticated data mining environment with all the power, and more, of the many commercial offerings.

Smart Data Analytics

Mit Hilfe von Big Data Zusammenhänge erkennen und Potentiale nutzen

Author: Andreas Wierse,Till Riedel

Publisher: Walter de Gruyter GmbH & Co KG

ISBN: 3110461919

Category: Technology & Engineering

Page: 440

View: 7088

Wenn in Datenbergen wertvolle Geheimnisse schlummern, aus denen Profit erzielt werden soll, dann geht es um Big Data. Doch wie schöpft man aus »großen Daten« echte Werte, wenn man nicht gerade Google ist? Um aus Unternehmens-, Maschinen- oder Sensordaten einen Ertrag zu erzielen, reicht Big Data-Technologie allein nicht aus. Entscheidend sind die übergeordneten Innovations prozesse: die smarte Analyse von Big Data. Erst durch den kompetenten Einsatz der richtigen Werkzeuge und Techniken werden aus Big Data tatsächlich Smart Data. Das Praxishandbuch Smart Data Analytics gibt einen Überblick über die Technologie, die bei der Analyse von großen und heterogenen Datenmengen – inklusive Echtzeitdaten – zum Einsatz kommt. Elf Praxisbeispiele zeigen die konkrete Anwendung in kleinen und mittelständischen Unternehmen. So erfahren Sie, wie Sie Ihr Smart Data Analytics-Projekt in Ihrem eigenen Unternehmen vorbereiten und umsetzen können. Das Buch erläutert neben den organisatorischen Aspekten auch die rechtlichen Rahmenbedingungen. Und es zeigt, wie Sie sowohl den Nutzen bewerten können, der aus den Daten gezogen werden soll, als auch den Aufwand, den Sie dafür betreiben müssen. Denn Smart Data steht für mehr als nur die Untersuchung großer Datenmengen: Smart Data Analytics ist der Schlüssel zu einem smarten Umgang mit Ihren Unternehmensdaten und hilft, bislang unentdecktes Potenzial zu entdecken. Dr. Andreas Wierse studierte Mathematik und promovierte in den Ingenieurwissenschaften im Bereich Visualisierung, seit 2011 unterstützt er mittelständische Unternehmen rund um Big und Smart Data Technologie. Dr. Till Riedel lehrt als Informatiker am KIT und koordiniert im Smart Data Solution Center Baden-Württemberg und Smart Data Innovation Lab Forschung und Innovation auf industriellen Datenschätzen.

Journeys to Data Mining

Experiences from 15 Renowned Researchers

Author: Mohamed Medhat Gaber

Publisher: Springer Science & Business Media

ISBN: 3642280471

Category: Computers

Page: 244

View: 2904

Data mining, an interdisciplinary field combining methods from artificial intelligence, machine learning, statistics and database systems, has grown tremendously over the last 20 years and produced core results for applications like business intelligence, spatio-temporal data analysis, bioinformatics, and stream data processing. The fifteen contributors to this volume are successful and well-known data mining scientists and professionals. Although by no means an exhaustive list, all of them have helped the field to gain the reputation and importance it enjoys today, through the many valuable contributions they have made. Mohamed Medhat Gaber has asked them (and many others) to write down their journeys through the data mining field, trying to answer the following questions: 1. What are your motives for conducting research in the data mining field? 2. Describe the milestones of your research in this field. 3. What are your notable success stories? 4. How did you learn from your failures? 5. Have you encountered unexpected results? 6. What are the current research issues and challenges in your area? 7. Describe your research tools and techniques. 8. How would you advise a young researcher to make an impact? 9. What do you predict for the next two years in your area? 10. What are your expectations in the long term? In order to maintain the informal character of their contributions, they were given complete freedom as to how to organize their answers. This narrative presentation style provides PhD students and novices who are eager to find their way to successful research in data mining with valuable insights into career planning. In addition, everyone else interested in the history of computer science may be surprised about the stunning successes and possible failures computer science careers (still) have to offer.

Data Mining and Business Analytics with R

Author: Johannes Ledolter

Publisher: John Wiley & Sons

ISBN: 1118572157

Category: Computers

Page: 368

View: 756

Collecting, analyzing, and extracting valuable information froma large amount of data requires easily accessible, robust,computational and analytical tools. Data Mining and BusinessAnalytics with R utilizes the open source software R for theanalysis, exploration, and simplification of large high-dimensionaldata sets. As a result, readers are provided with the neededguidance to model and interpret complicated data and become adeptat building powerful models for prediction and classification. Highlighting both underlying concepts and practicalcomputational skills, Data Mining and Business Analytics withR begins with coverage of standard linear regression and theimportance of parsimony in statistical modeling. The book includesimportant topics such as penalty-based variable selection (LASSO);logistic regression; regression and classification trees;clustering; principal components and partial least squares; and theanalysis of text and network data. In addition, the bookpresents: • A thorough discussion and extensive demonstration of thetheory behind the most useful data mining tools • Illustrations of how to use the outlined concepts inreal-world situations • Readily available additional data sets and related Rcode allowing readers to apply their own analyses to the discussedmaterials • Numerous exercises to help readers with computing skillsand deepen their understanding of the material Data Mining and Business Analytics with R is an excellentgraduate-level textbook for courses on data mining and businessanalytics. The book is also a valuable reference for practitionerswho collect and analyze data in the fields of finance, operationsmanagement, marketing, and the information sciences.

Data Mining Algorithms

Explained Using R

Author: Pawel Cichosz

Publisher: John Wiley & Sons

ISBN: 1118950801

Category: Mathematics

Page: 720

View: 7594

Data Mining Algorithms is a practical, technically-oriented guide to data mining algorithms that covers the most important algorithms for building classification, regression, and clustering models, as well as techniques used for attribute selection and transformation, model quality evaluation, and creating model ensembles. The author presents many of the important topics and methodologies widely used in data mining, whilst demonstrating the internal operation and usage of data mining algorithms using examples in R.

Learning R

A Step-by-Step Function Guide to Data Analysis

Author: Richard Cotton

Publisher: "O'Reilly Media, Inc."

ISBN: 1449357180

Category: Computers

Page: 400

View: 3549

Learn how to perform data analysis with the R language and software environment, even if you have little or no programming experience. With the tutorials in this hands-on guide, you’ll learn how to use the essential R tools you need to know to analyze data, including data types and programming concepts. The second half of Learning R shows you real data analysis in action by covering everything from importing data to publishing your results. Each chapter in the book includes a quiz on what you’ve learned, and concludes with exercises, most of which involve writing R code. Write a simple R program, and discover what the language can do Use data types such as vectors, arrays, lists, data frames, and strings Execute code conditionally or repeatedly with branches and loops Apply R add-on packages, and package your own work for others Learn how to clean data you import from a variety of sources Understand data through visualization and summary statistics Use statistical models to pass quantitative judgments about data and make predictions Learn what to do when things go wrong while writing data analysis code

Eine kurze Geschichte der Menschheit

Author: Yuval Noah Harari

Publisher: DVA

ISBN: 364110498X

Category: History

Page: 528

View: 3289

Krone der Schöpfung? Vor 100 000 Jahren war der Homo sapiens noch ein unbedeutendes Tier, das unauffällig in einem abgelegenen Winkel des afrikanischen Kontinents lebte. Unsere Vorfahren teilten sich den Planeten mit mindestens fünf weiteren menschlichen Spezies, und die Rolle, die sie im Ökosystem spielten, war nicht größer als die von Gorillas, Libellen oder Quallen. Vor 70 000 Jahren dann vollzog sich ein mysteriöser und rascher Wandel mit dem Homo sapiens, und es war vor allem die Beschaffenheit seines Gehirns, die ihn zum Herren des Planeten und zum Schrecken des Ökosystems werden ließ. Bis heute hat sich diese Vorherrschaft stetig zugespitzt: Der Mensch hat die Fähigkeit zu schöpferischem und zu zerstörerischem Handeln wie kein anderes Lebewesen. Anschaulich, unterhaltsam und stellenweise hochkomisch zeichnet Yuval Harari die Geschichte des Menschen nach und zeigt alle großen, aber auch alle ambivalenten Momente unserer Menschwerdung.

R in a Nutshell

Author: Joseph Adler

Publisher: O'Reilly Germany

ISBN: 3897216507

Category: Computers

Page: 768

View: 5566

Wozu sollte man R lernen? Da gibt es viele Gründe: Weil man damit natürlich ganz andere Möglichkeiten hat als mit einer Tabellenkalkulation wie Excel, aber auch mehr Spielraum als mit gängiger Statistiksoftware wie SPSS und SAS. Anders als bei diesen Programmen hat man nämlich direkten Zugriff auf dieselbe, vollwertige Programmiersprache, mit der die fertigen Analyse- und Visualisierungsmethoden realisiert sind – so lassen sich nahtlos eigene Algorithmen integrieren und komplexe Arbeitsabläufe realisieren. Und nicht zuletzt, weil R offen gegenüber beliebigen Datenquellen ist, von der einfachen Textdatei über binäre Fremdformate bis hin zu den ganz großen relationalen Datenbanken. Zudem ist R Open Source und erobert momentan von der universitären Welt aus die professionelle Statistik. R kann viel. Und Sie können viel mit R machen – wenn Sie wissen, wie es geht. Willkommen in der R-Welt: Installieren Sie R und stöbern Sie in Ihrem gut bestückten Werkzeugkasten: Sie haben eine Konsole und eine grafische Benutzeroberfläche, unzählige vordefinierte Analyse- und Visualisierungsoperationen – und Pakete, Pakete, Pakete. Für quasi jeden statistischen Anwendungsbereich können Sie sich aus dem reichen Schatz der R-Community bedienen. Sprechen Sie R! Sie müssen Syntax und Grammatik von R nicht lernen – wie im Auslandsurlaub kommen Sie auch hier gut mit ein paar aufgeschnappten Brocken aus. Aber es lohnt sich: Wenn Sie wissen, was es mit R-Objekten auf sich hat, wie Sie eigene Funktionen schreiben und Ihre eigenen Pakete schnüren, sind Sie bei der Analyse Ihrer Daten noch flexibler und effektiver. Datenanalyse und Statistik in der Praxis: Anhand unzähliger Beispiele aus Medizin, Wirtschaft, Sport und Bioinformatik lernen Sie, wie Sie Daten aufbereiten, mithilfe der Grafikfunktionen des lattice-Pakets darstellen, statistische Tests durchführen und Modelle anpassen. Danach werden Ihnen Ihre Daten nichts mehr verheimlichen.

In die Wildnis

Allein nach Alaska

Author: Jon Krakauer

Publisher: Piper Verlag

ISBN: 3492957773

Category: Biography & Autobiography

Page: 304

View: 5066

Im August 1992 wurde die Leiche von Chris McCandless im Eis von Alaska gefunden. Wer war dieser junge Mann, und was hatte ihn in die gottverlassene Wildnis getrieben? Jon Krakauer hat sein Leben erforscht, seine Reise in den Tod rekonstruiert und ein traurig-schönes Buch geschrieben über die Sehnsucht, die diesen Mann veranlasste, sämtliche Besitztümer und Errungenschaften der Zivilisation hinter sich zu lassen, um tief in die wilde und einsame Schönheit der Natur einzutauchen.– Verfilmt von Sean Penn mit Emile Hirsch.

Einführung in SQL

Author: Alan Beaulieu

Publisher: O'Reilly Germany

ISBN: 3897219387

Category: Computers

Page: 353

View: 847

SQL kann Spaß machen! Es ist ein erhebendes Gefühl, eine verworrene Datenmanipulation oder einen komplizierten Report mit einer einzigen Anweisung zu bewältigen und so einen Haufen Arbeit vom Tisch zu bekommen. Einführung in SQL bietet einen frischen Blick auf die Sprache, deren Grundlagen jeder Entwickler beherrschen muss. Die aktualisierte 2. Auflage deckt die Versionen MySQL 6.0, Oracle 11g und Microsoft SQL Server 2008 ab. Außerdem enthält sie neue Kapitel zu Views und Metadaten. SQL-Basics - in null Komma nichts durchstarten: Mit diesem leicht verständlichen Tutorial können Sie SQL systematisch und gründlich lernen, ohne sich zu langweilen. Es führt Sie rasch durch die Basics der Sprache und vermittelt darüber hinaus eine Reihe von häufig genutzten fortgeschrittenen Features. Mehr aus SQL-Befehlen herausholen: Alan Beaulieu will mehr vermitteln als die simple Anwendung von SQL-Befehlen: Er legt Wert auf ein tiefes Verständnis der SQL-Features und behandelt daher auch den Umgang mit Mengen, Abfragen innerhalb von Abfragen oder die überaus nützlichen eingebauten Funktionen von SQL. Die MySQL-Beispieldatenbank: Es gibt zwar viele Datenbankprodukte auf dem Markt, aber welches wäre zum Erlernen von SQL besser geeignet als MySQL, das weit verbreitete relationale Datenbanksystem? Der Autor hilft Ihnen, eine MySQL-Datenbank anzulegen, und nutzt diese für die Beispiele in diesem Buch. Übungen mit Lösungen: Zu jedem Thema finden Sie im Buch gut durchdachte Übungen mit Lösungen. So ist sichergestellt, dass Sie schnell Erfolgserlebnisse haben und das Gelernte auch praktisch umsetzen können.

Data mining

praktische Werkzeuge und Techniken für das maschinelle Lernen

Author: Ian H. Witten,Eibe Frank

Publisher: N.A

ISBN: 9783446215337


Page: 386

View: 1861

Der perfekte Tipp

Statistik des Fußballspiels

Author: Andreas Heuer

Publisher: John Wiley & Sons

ISBN: 3527650784

Category: Mathematics

Page: 330

View: 8618

How predictable is a soccer game, what good does the change of a coach, which role does the salary of soccer players have? Andreas Heuer surprises us with his analysis of soccer statistics. He shows that many beloved soccer sayings will vanish into thin air at a closer look.

Grundzüge der Morphologie des Deutschen

Author: Hilke Elsen

Publisher: Walter de Gruyter GmbH & Co KG

ISBN: 3110373637

Category: Language Arts & Disciplines

Page: 350

View: 867

Dieses Lehrbuch zu Flexion und Wortbildung des Deutschen orientiert sich gezielt an den Studiengängen Bachelor und Master mit jeweils getrennten Kapiteln für Anfänger und Fortgeschrittene. Der Stoff ist in Module strukturiert, die den Band zusammen mit dem Glossar außerdem zu einem Nachschlagewerk zur Prüfungsvorbereitung machen. Das Buch stellt die etablierte Fachterminologie vor und behandelt morphologische Einheiten, formelle und semantische Strukturen und Verfahren der Analyse mit seltenen und unproduktiven Wortbildungsarten. Dabei findet auch die Fremdwortbildung Berücksichtigung sowie diachrone Entwicklungen und die Wortbildung der Präpositionen, Konjunktionen und Pronomen. Anhand von zahlreichen Beispielen werden die systematischen syntaktischen, semantischen, morphologischen und phonologischen Zusammenhänge deutlich, die im Verlaufe der Sprachentwicklung und beim Gebrauch der Wörter zum aktuellen Stand der Wortstrukturen führten. Problemorientierte Diskussionen, Musterlösungen, Übungsaufgaben sowie Literaturhinweise zur Vertiefung unterstützen ein selbständiges Bearbeiten des Stoffes. Daserfolgreiche Einführungswerk liegt nun in einer aktualisiertenNeuauflage vor.

Parametrische Statistik

Verteilungen, maximum likelihood und GLM in R

Author: Carsten F. Dormann

Publisher: Springer-Verlag

ISBN: 3662546841

Category: Medical

Page: 363

View: 9727

Beispielreich baut dieses Buch Schritt für Schritt die statistischen Grundlagen moderner Datenanalysen auf. Im Gegensatz zu anderen einführenden Werken legt dieses Buch großen Wert auf einen umfassend gespannten Bogen, einen roten Faden, der alle Methoden zusammenführt. Dabei werden klassische statistische Methoden (etwa t-Test oder multiple Regression) als Spezialfall des Generalisierten Linearen Modells entwickelt. Entsprechend legt das Buch zunächst eine Grundlage in beschreibender Statistik, Verteilungen und maximum likelihood, aus der dann alle anderen Verfahren abgeleitet werden (ANOVA, multiple Regression). Jeder Schritt ist auf zwei Kapitel verteilt: Im ungradzahligen Kapitel wird anhand von vielen Beispielen und Abbildungen die Idee der statistischen Herangehensweise erläutert. Im sich daran anschließenden gradzahligen Kapitel wird die Umsetzung in der freien Statistiksoftware R gezeigt. Ein Kapitel zur Wissenschafts- und Forschungstheorie und eines zum Design von Experimenten und Stichprobeverfahren komplettiert dieses einleitende Werk. Das Buch legt großen Wert auf Verständlichkeit und Umsetzung. Mathematische Herleitungen treten demgegenüber stark in den Hintergrund. Jedes Kapitel enthält explizit ausgewiesene Lerninhalte, die durch Übungen zu jedem R-Kapitel geprüft werden können. Ein ausführliches Schlagwortverzeichnis inklusive der R-Funktionen macht das Buch auch als Nachschlagewerk nutzbar. Die zweite Auflage wurde ergänzt um Schätzung mittels der Momentenmethode, Residuendiagnostik für nicht-normalverteilte Daten und die erschöpfende Modellsuche.

SQL von Kopf bis Fuss

Author: Lynn Beighley

Publisher: O'Reilly Germany

ISBN: 3955619443

Category: Computers

Page: 608

View: 9742

Ihre Daten erdrücken Sie? Ihre Tabellen verheddern sich regelmäßig? Wir haben ein Mittel, wie Sie Ihre Datenbanken in den Griff bekommen: SQL von Kopf bis Fuß nimmt Sie mit auf eine Reise durch die SQL-Welt, es geleitet Sie von einfachen INSERT-Anweisungen und SELECT-Abfragen zu knallharten Datenbank-Manipulationen mit Indizes, Joins und Transaktionen. Erwarten Sie dennoch Spaß, gehen Sie davon aus, etwas zu lernen, und machen Sie sich darauf gefasst, dass Sie Ihre Daten wie ein Profi abfragen, normalisieren und verknüpfen werden, noch bevor Sie dieses Buch ausgelesen haben. SQL von Kopf bis Fuß ist in einem visuell abwechslungsreichen Format gestaltet, das sich an den neuesten Forschungsergebnissen aus Kognitionswissenschaft und Lerntheorie orientiert und Ihnen das Lernen so einfach wie möglich machen soll. Das Buch bietet Ihnen ein unterhaltsames Lernerlebnis und spielt Ihnen SQL direkt ins Hirn - und zwar so, dass es sitzt.

Programmieren mit R

Author: Uwe Ligges

Publisher: Springer-Verlag

ISBN: 3540267328

Category: Mathematics

Page: 237

View: 699

R ist eine objekt-orientierte und interpretierte Sprache und Programmierumgebung für Datenanalyse und Grafik - frei erhältlich unter der GPL. Ziel dieses Buches ist es, nicht nur ausführlich in die Grundlagen der Sprache R einzuführen, sondern auch ein Verständnis der Struktur der Sprache zu vermitteln. Leicht können so eigene Methoden umgesetzt, Objektklassen definiert und ganze Pakete aus Funktionen und zugehöriger Dokumentation zusammengestellt werden. Die enormen Grafikfähigkeiten von R werden detailliert beschrieben. Das Buch richtet sich an alle, die R als flexibles Werkzeug zur Datenenalyse und -visualisierung einsetzen möchten: Studierende, die Daten in Projekten oder für ihre Diplomarbeit analysieren möchten, Forschende, die neue Methoden ausprobieren möchten, und diejenigen, die in der Wirtschaft täglich Daten aufbereiten, analysieren und anderen in komprimierter Form präsentieren.

Erweiterte Datenanalyse mit SPSS

Statistik und Data Mining

Author: Achim Bühl,Peter Zöfel

Publisher: Springer-Verlag

ISBN: 332289603X

Category: Computers

Page: 396

View: 6608

Das Buch beschreibt Methoden der Statistik und des Data Mining, die zu SPSS, der weltweit verbreitetsten Software zur statistischen Datenanalyse, in Form weiterer Module und Programme angeboten werden: Entscheidungsbaumanalyse (das Programm Answer Tree), mehrere Varianten der Korrespondenzanalyse, kategoriale Regression und multidimensionale Skalierung (Categories), Conjoint-Analyse (Conjoint), Pfadanalyse (Amos), Zeitreihenanalysen (Trends) sowie exakte Varianten für nichtparametrische Tests und Kreuztabellenstatistiken bei kleinen Fallzahlen (Exact Tests). Die Erstellung präsentationsreifer Tabellen (Tables) und weiterer Reportmöglichkeiten runden das Buch ab. Die Einführung in die Verfahren erfolgt anhand passender Beispiele, wobei auf komplizierte mathematische Herleitungen verzichtet wird. Alle Datenbeispiele sind auf einer CD beigegeben, so dass sie selbst nachvollzogen bzw. modifiziert werden können.

Real-Time Data Mining

Author: Florian Stompe

Publisher: Diplomica Verlag

ISBN: 3836678799

Category: Business & Economics

Page: 106

View: 7572

Data Mining ist ein inzwischen etabliertes, erfolgreiches Werkzeug zur Extraktion von neuem, bislang unbekanntem Wissen aus Daten. In mittlerweile fast allen gr eren Unternehmen wird es genutzt um Mehrwerte f r Kunden zu generieren, den Erfolg von Marketingkampagnen zu erh hen, Betrugsverdacht aufzudecken oder beispielsweise durch Segmentierung unterschiedliche Kundengruppen zu identifizieren. Ein Grundproblem der intelligenten Datenanalyse besteht darin, dass Daten oftmals in rasanter Geschwindigkeit neu entstehen. Eink ufe im Supermarkt, Telefonverbindungen oder der ffentliche Verkehr erzeugen t glich eine neue Flut an Daten, in denen potentiell wertvolles Wissen steckt. Die versteckten Zusammenh nge und Muster k nnen sich im Zeitverlauf mehr oder weniger stark ver ndern. Datenmodellierung findet in der Regel aber noch immer einmalig bzw. sporadisch auf dem Snapshot einer Datenbank statt. Einmal erkannte Muster oder Zusammenh nge werden auch dann noch angenommen, wenn diese l ngst nicht mehr bestehen. Gerade in dynamischen Umgebungen wie zum Beispiel einem Internet-Shop sind Data Mining Modelle daher schnell veraltet. Betrugsversuche k nnen dann unter Umst nden nicht mehr erkannt, Absatzpotentiale nicht mehr genutzt werden oder Produktempfehlungen basieren auf veralteten Warenk rben. Um dauerhaft Wettbewerbsvorteile erzielen zu k nnen, muss das Wissen ber Daten aber m glichst aktuell und von ausgezeichneter Qualit t sein. Der Inhalt dieses Buches skizziert Methoden und Vorgehensweisen von Data Mining in Echtzeit.