Applied Deep Learning with Python

Use scikit-learn, TensorFlow, and Keras to create intelligent systems and machine learning solutions

Author: Alex Galea,Luis Capelo

Publisher: Packt Publishing Ltd

ISBN: 1789806992

Category: Computers

Page: 334

View: 3869

A hands-on guide to deep learning that’s filled with intuitive explanations and engaging practical examples Key Features Designed to iteratively develop the skills of Python users who don’t have a data science background Covers the key foundational concepts you’ll need to know when building deep learning systems Full of step-by-step exercises and activities to help build the skills that you need for the real-world Book Description Taking an approach that uses the latest developments in the Python ecosystem, you’ll first be guided through the Jupyter ecosystem, key visualization libraries and powerful data sanitization techniques before we train our first predictive model. We’ll explore a variety of approaches to classification like support vector networks, random decision forests and k-nearest neighbours to build out your understanding before we move into more complex territory. It’s okay if these terms seem overwhelming; we’ll show you how to put them to work. We’ll build upon our classification coverage by taking a quick look at ethical web scraping and interactive visualizations to help you professionally gather and present your analysis. It’s after this that we start building out our keystone deep learning application, one that aims to predict the future price of Bitcoin based on historical public data. By guiding you through a trained neural network, we’ll explore common deep learning network architectures (convolutional, recurrent, generative adversarial) and branch out into deep reinforcement learning before we dive into model optimization and evaluation. We’ll do all of this whilst working on a production-ready web application that combines Tensorflow and Keras to produce a meaningful user-friendly result, leaving you with all the skills you need to tackle and develop your own real-world deep learning projects confidently and effectively. What you will learn Discover how you can assemble and clean your very own datasets Develop a tailored machine learning classification strategy Build, train and enhance your own models to solve unique problems Work with production-ready frameworks like Tensorflow and Keras Explain how neural networks operate in clear and simple terms Understand how to deploy your predictions to the web Who this book is for If you're a Python programmer stepping into the world of data science, this is the ideal way to get started.

Hands-On Transfer Learning with Python

Implement advanced deep learning and neural network models using TensorFlow and Keras

Author: Dipanjan Sarkar,Raghav Bali,Tamoghna Ghosh

Publisher: Packt Publishing Ltd

ISBN: 1788839056

Category: Computers

Page: 438

View: 8366

Deep learning simplified by taking supervised, unsupervised, and reinforcement learning to the next level using the Python ecosystem Key Features Build deep learning models with transfer learning principles in Python implement transfer learning to solve real-world research problems Perform complex operations such as image captioning neural style transfer Book Description Transfer learning is a machine learning (ML) technique where knowledge gained during training a set of problems can be used to solve other similar problems. The purpose of this book is two-fold; firstly, we focus on detailed coverage of deep learning (DL) and transfer learning, comparing and contrasting the two with easy-to-follow concepts and examples. The second area of focus is real-world examples and research problems using TensorFlow, Keras, and the Python ecosystem with hands-on examples. The book starts with the key essential concepts of ML and DL, followed by depiction and coverage of important DL architectures such as convolutional neural networks (CNNs), deep neural networks (DNNs), recurrent neural networks (RNNs), long short-term memory (LSTM), and capsule networks. Our focus then shifts to transfer learning concepts, such as model freezing, fine-tuning, pre-trained models including VGG, inception, ResNet, and how these systems perform better than DL models with practical examples. In the concluding chapters, we will focus on a multitude of real-world case studies and problems associated with areas such as computer vision, audio analysis and natural language processing (NLP). By the end of this book, you will be able to implement both DL and transfer learning principles in your own systems. What you will learn Set up your own DL environment with graphics processing unit (GPU) and Cloud support Delve into transfer learning principles with ML and DL models Explore various DL architectures, including CNN, LSTM, and capsule networks Learn about data and network representation and loss functions Get to grips with models and strategies in transfer learning Walk through potential challenges in building complex transfer learning models from scratch Explore real-world research problems related to computer vision and audio analysis Understand how transfer learning can be leveraged in NLP Who this book is for Hands-On Transfer Learning with Python is for data scientists, machine learning engineers, analysts and developers with an interest in data and applying state-of-the-art transfer learning methodologies to solve tough real-world problems. Basic proficiency in machine learning and Python is required.

Deep Learning with R

Author: Francois Chollet,J.j. Allaire

Publisher: Pearson Professional

ISBN: 9781617295546

Category: Computers

Page: 360

View: 581

Introduces deep learning systems using the powerful Keras library and its R language interface. The book builds your understanding of deep learning through intuitive explanations and practical examples.

Deep Learning with Python, Francois Chollet, 2018

Python

Author: manning Publications, Co

Publisher: Bukupedia

ISBN: N.A

Category: Computers

Page: 386

View: 864

If you’ve picked up this book, you’re probably aware of the extraordinary progress that deep learning has represented for the field of artificial intelligence in the recent past. In a mere five years, we’ve gone from near-unusable image recognition and speech transcription, to superhuman performance on these tasks. The consequences of this sudden progress extend to almost every industry. But in order to begin deploying deep-learning technology to every problem that it could solve, we need to make it accessible to as many people as possible, including nonexperts— people who aren’t researchers or graduate students. For deep learning to reach its full potential, we need to radically democratize it. When I released the first version of the Keras deep-learning framework in March 2015, the democratization of AI wasn’t what I had in mind. I had been doing research in machine learning for several years, and had built Keras to help me with my own experiments. But throughout 2015 and 2016, tens of thousands of new people entered the field of deep learning; many of them picked up Keras because it was—and still is—the easiest framework to get started with. As I watched scores of newcomers use Keras in unexpected, powerful ways, I came to care deeply about the accessibility and democratization of AI. I realized that the further we spread these technologies, the more useful and valuable they become. Accessibility quickly became an explicit goal in the development of Keras, and over a few short years, the Keras developer community has made fantastic achievements on this front. We’ve put deep learning into the hands of tens of thousands of people, who in turn are using it to solve important problems we didn’t even know existed until recently. The book you’re holding is another step on the way to making deep learning available to as many people as possible. Keras had always needed a companion course to Licensed to xiv PREFACE simultaneously cover fundamentals of deep learning, Keras usage patterns, and deeplearning best practices. This book is my best effort to produce such a course. I wrote it with a focus on making the concepts behind deep learning, and their implementation, as approachable as possible. Doing so didn’t require me to dumb down anything— I strongly believe that there are no difficult ideas in deep learning. I hope you’ll find this book valuable and that it will enable you to begin building intelligent applications and solve the problems that matter to you. Licensed to

Deep Learning with Python

Author: Francois Chollet

Publisher: Manning Publications

ISBN: 9781617294433

Category: Machine learning

Page: 384

View: 1084

Summary Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher Fran�ois Chollet, this book builds your understanding through intuitive explanations and practical examples. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Machine learning has made remarkable progress in recent years. We went from near-unusable speech and image recognition, to near-human accuracy. We went from machines that couldn't beat a serious Go player, to defeating a world champion. Behind this progress is deep learning--a combination of engineering advances, best practices, and theory that enables a wealth of previously impossible smart applications. About the Book Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher Fran�ois Chollet, this book builds your understanding through intuitive explanations and practical examples. You'll explore challenging concepts and practice with applications in computer vision, natural-language processing, and generative models. By the time you finish, you'll have the knowledge and hands-on skills to apply deep learning in your own projects. What's Inside Deep learning from first principles Setting up your own deep-learning environment Image-classification models Deep learning for text and sequences Neural style transfer, text generation, and image generation About the Reader Readers need intermediate Python skills. No previous experience with Keras, TensorFlow, or machine learning is required. About the Author Fran�ois Chollet works on deep learning at Google in Mountain View, CA. He is the creator of the Keras deep-learning library, as well as a contributor to the TensorFlow machine-learning framework. He also does deep-learning research, with a focus on computer vision and the application of machine learning to formal reasoning. His papers have been published at major conferences in the field, including the Conference on Computer Vision and Pattern Recognition (CVPR), the Conference and Workshop on Neural Information Processing Systems (NIPS), the International Conference on Learning Representations (ICLR), and others. Table of Contents PART 1 - FUNDAMENTALS OF DEEP LEARNING What is deep learning? Before we begin: the mathematical building blocks of neural networks Getting started with neural networks Fundamentals of machine learning PART 2 - DEEP LEARNING IN PRACTICE Deep learning for computer vision Deep learning for text and sequences Advanced deep-learning best practices Generative deep learning Conclusions appendix A - Installing Keras and its dependencies on Ubuntu appendix B - Running Jupyter notebooks on an EC2 GPU instance

Praxiseinstieg Deep Learning

Mit Python, Caffe, TensorFlow und Spark eigene Deep-Learning-Anwendungen erstellen

Author: Ramon Wartala

Publisher: O'Reilly

ISBN: 3960101570

Category: Computers

Page: 226

View: 1192

Deep Learning ist ein Teilbereich des Machine Learning und basiert auf künstlichen neuronalen Netzen. Dieser praktische Leitfaden bietet einen schnellen Einstieg in die Schlüsseltechnologie und erschließt Grundlagen und Arbeitsweisen von Deep Learning. Anhand Python-basierter Beispielanwendungen wird der Umgang mit den Frameworks Caffe/Caffe2 und TensorFlow gezeigt. Einfache, alltagstaugliche Beispiele laden zum Nachprogrammieren ein. Darüber hinaus erfahren Sie, warum moderne Grafikkarten, Big Data und Cloud Computing beim Deep Learning so wichtig sind. Wenn Sie bereits mit Python, NumPy und matplotlib arbeiten, ermöglicht Ihnen dieses Buch, praktische Erfahrungen mit Deep-Learning-Anwendungen zu machen. Deep Learning – die Hintergründe - Lernmethoden, die Deep Learning zugrunde liegen - Aktuelle Anwendungsfelder wie maschinelle Übersetzungen, Sprach- und Bilderkennung bei Google, Facebook, IBM oder Amazon Der Werkzeugkasten mit Docker - Der Docker-Container zum Buch: Alle nötigen Tools und Programme sind bereits installiert, damit Sie die Beispiele des Buchs und eigene Deep-Learning-Anwendungen leicht ausführen können. - Die Arbeitsumgebung kennenlernen: Jupyter Notebook, Beispieldatensätze, Web Scraping Der Praxiseinstieg - Einführung in Caffe/Caffe2 und TensorFlow - Deep-Learning-Anwendungen nachprogrammieren: Handschrifterkennung, Bilderkennung und -klassifizierung, Deep Dreaming - Lösungen für Big-Data-Szenarien: verteilte Anwendungen, Spark, Cloud-Systeme - Modelle in produktive Systeme überführen

Python Machine Learning

Machine Learning and Deep Learning with Python, Scikit-Learn, and TensorFlow

Author: Samuel Samuel Burns

Publisher: N.A

ISBN: 9781793175854

Category:

Page: 146

View: 3837

If you buy a new print edition of this book (or purchased one in the past), you can buy the Kindle Edition for FREE. Print edition purchase must be sold by Amazon!You want to learn Machine Learning and Deep Learning with Python, Scikit-Learn, Tenserflow and you don't know how to start? You don't need a big boring and expensive textbook. This book is the best one for everyone. Order your book Now!! Why this book is the best one for data scientist? Here are the reasons:The author has explored everything about machine learning and deep learning right from the basics. A simple language has been used. Many examples have been given, both theoretically and programmatically. Screenshots showing program outputs have been added. The book is written chronologically, in a step-by-step manner . Book Objectives: The Aims and Objectives of the Book: To help you understand the basics of machine learning and deep learning. Understand the various categoriesof machine learning algorithms. To help you understand how different machine learning algorithms work. You will learn how to implement various machine learning algorithms programmatically in Python. To help you learn how to use Scikit-Learn and TensorFlow Libraries in Python. To help you know how to analyze data programmatically to extract patterns, trends, and relationships between variables. Who this Book is for? Here are the target readers for this book: Anybody who is a complete beginner to machine learning in Python. Anybody who needs to advance their programming skills in Python for machine learning programming and deep learning. Professionals in data science. Professors, lecturers or tutors who are looking to find better ways to explain machine learning to their students in the simplest and easiest way. Students and academicians, especially those focusing on neural networks, machine learning, and deep learning. What do you need for this Book? You are required to have installed the following on your computer: Python 3.X Numpy Pandas Matplotlib The Author guides you on how to install the rest of the Python libraries that are required for machine learning and deep learning. What is inside the book: Getting Started Environment Setup Using Scikit-Learn Linear Regression with Scikit-Learn k-Nearest Neighbors Algorithm K-Means Clustering Support Vector Machines Neural Networks with Scikit-learn Random Forest Algorithm Using TensorFlow Recurrent Neural Networks with TensorFlow Linear Classifier This book will teach you machine learning classifiers using scikit-learn and tenserflow . The book provides a great overview of functions you can use to build a support vector machine, decision tree, perceptron, and k-nearest neighbors. Thanks of this book you will be able to set up a learning pipeline that handles input and output data, pre-processes it, selects meaningful features, and applies a classifier on it. This book offers a lot of insight into machine learning for both beginners, as well as for professionals, who already use some machine learning techniques. Concepts and the background of these concepts are explained clearly in this tutorial.

Deep Learning with Applications Using Python

Chatbots and Face, Object, and Speech Recognition With TensorFlow and Keras

Author: Navin Kumar Manaswi

Publisher: Apress

ISBN: 1484235169

Category: Computers

Page: 219

View: 7140

Explore deep learning applications, such as computer vision, speech recognition, and chatbots, using frameworks such as TensorFlow and Keras. This book helps you to ramp up your practical know-how in a short period of time and focuses you on the domain, models, and algorithms required for deep learning applications. Deep Learning with Applications Using Python covers topics such as chatbots, natural language processing, and face and object recognition. The goal is to equip you with the concepts, techniques, and algorithm implementations needed to create programs capable of performing deep learning. This book covers convolutional neural networks, recurrent neural networks, and multilayer perceptrons. It also discusses popular APIs such as IBM Watson, Microsoft Azure, and scikit-learn. What You Will Learn Work with various deep learning frameworks such as TensorFlow, Keras, and scikit-learn. Use face recognition and face detection capabilities Create speech-to-text and text-to-speech functionality Engage with chatbots using deep learning Who This Book Is For Data scientists and developers who want to adapt and build deep learning applications.

Deep Learning with Keras

Author: Antonio Gulli,Sujit Pal

Publisher: Packt Publishing Ltd

ISBN: 1787129039

Category: Computers

Page: 318

View: 2405

Get to grips with the basics of Keras to implement fast and efficient deep-learning models About This Book Implement various deep-learning algorithms in Keras and see how deep-learning can be used in games See how various deep-learning models and practical use-cases can be implemented using Keras A practical, hands-on guide with real-world examples to give you a strong foundation in Keras Who This Book Is For If you are a data scientist with experience in machine learning or an AI programmer with some exposure to neural networks, you will find this book a useful entry point to deep-learning with Keras. A knowledge of Python is required for this book. What You Will Learn Optimize step-by-step functions on a large neural network using the Backpropagation Algorithm Fine-tune a neural network to improve the quality of results Use deep learning for image and audio processing Use Recursive Neural Tensor Networks (RNTNs) to outperform standard word embedding in special cases Identify problems for which Recurrent Neural Network (RNN) solutions are suitable Explore the process required to implement Autoencoders Evolve a deep neural network using reinforcement learning In Detail This book starts by introducing you to supervised learning algorithms such as simple linear regression, the classical multilayer perceptron and more sophisticated deep convolutional networks. You will also explore image processing with recognition of hand written digit images, classification of images into different categories, and advanced objects recognition with related image annotations. An example of identification of salient points for face detection is also provided. Next you will be introduced to Recurrent Networks, which are optimized for processing sequence data such as text, audio or time series. Following that, you will learn about unsupervised learning algorithms such as Autoencoders and the very popular Generative Adversarial Networks (GAN). You will also explore non-traditional uses of neural networks as Style Transfer. Finally, you will look at Reinforcement Learning and its application to AI game playing, another popular direction of research and application of neural networks. Style and approach This book is an easy-to-follow guide full of examples and real-world applications to help you gain an in-depth understanding of Keras. This book will showcase more than twenty working Deep Neural Networks coded in Python using Keras.

Deep Learning with Python

A Hands-on Introduction

Author: Nikhil Ketkar

Publisher: Apress

ISBN: 1484227662

Category: Computers

Page: 226

View: 3651

Discover the practical aspects of implementing deep-learning solutions using the rich Python ecosystem. This book bridges the gap between the academic state-of-the-art and the industry state-of-the-practice by introducing you to deep learning frameworks such as Keras, Theano, and Caffe. The practicalities of these frameworks is often acquired by practitioners by reading source code, manuals, and posting questions on community forums, which tends to be a slow and a painful process. Deep Learning with Python allows you to ramp up to such practical know-how in a short period of time and focus more on the domain, models, and algorithms. This book briefly covers the mathematical prerequisites and fundamentals of deep learning, making this book a good starting point for software developers who want to get started in deep learning. A brief survey of deep learning architectures is also included. Deep Learning with Python also introduces you to key concepts of automatic differentiation and GPU computation which, while not central to deep learning, are critical when it comes to conducting large scale experiments. What You Will Learn Leverage deep learning frameworks in Python namely, Keras, Theano, and Caffe Gain the fundamentals of deep learning with mathematical prerequisites Discover the practical considerations of large scale experiments Take deep learning models to production Who This Book Is For Software developers who want to try out deep learning as a practical solution to a particular problem. Software developers in a data science team who want to take deep learning models developed by data scientists to production.

Neuronale Netze selbst programmieren

Ein verständlicher Einstieg mit Python

Author: Tariq Rashid

Publisher: O'Reilly

ISBN: 3960101031

Category: Computers

Page: 232

View: 2703

Neuronale Netze sind Schlüsselelemente des Deep Learning und der Künstlichen Intelligenz, die heute zu Erstaunlichem in der Lage sind. Sie sind Grundlage vieler Anwendungen im Alltag wie beispielsweise Spracherkennung, Gesichtserkennung auf Fotos oder die Umwandlung von Sprache in Text. Dennoch verstehen nur wenige, wie neuronale Netze tatsächlich funktionieren. Dieses Buch nimmt Sie mit auf eine unterhaltsame Reise, die mit ganz einfachen Ideen beginnt und Ihnen Schritt für Schritt zeigt, wie neuronale Netze arbeiten: - Zunächst lernen Sie die mathematischen Konzepte kennen, die den neuronalen Netzen zugrunde liegen. Dafür brauchen Sie keine tieferen Mathematikkenntnisse, denn alle mathematischen Ideen werden behutsam und mit vielen Illustrationen und Beispielen erläutert. Eine Kurzeinführung in die Analysis unterstützt Sie dabei. - Dann geht es in die Praxis: Nach einer Einführung in die populäre und leicht zu lernende Programmiersprache Python bauen Sie allmählich Ihr eigenes neuronales Netz mit Python auf. Sie bringen ihm bei, handgeschriebene Zahlen zu erkennen, bis es eine Performance wie ein professionell entwickeltes Netz erreicht. - Im nächsten Schritt tunen Sie die Leistung Ihres neuronalen Netzes so weit, dass es eine Zahlenerkennung von 98 % erreicht – nur mit einfachen Ideen und simplem Code. Sie testen das Netz mit Ihrer eigenen Handschrift und werfen noch einen Blick in das mysteriöse Innere eines neuronalen Netzes. - Zum Schluss lassen Sie das neuronale Netz auf einem Raspberry Pi Zero laufen. Tariq Rashid erklärt diese schwierige Materie außergewöhnlich klar und verständlich, dadurch werden neuronale Netze für jeden Interessierten zugänglich und praktisch nachvollziehbar.

Deep Learning with Python

Author: Mike Krebbs

Publisher: Createspace Independent Publishing Platform

ISBN: 9781987407877

Category:

Page: 114

View: 5671

***** Buy now (Will soon return to $47.99 + Special Offer Below) ***** Free Kindle eBook for customers who purchase the print book from Amazon Are you thinking of learning more about Deep Learning From Scratch by using Python and TensorFlow? The overall aim of this book is to give you an application of deep learning techniques with python. Deep Learning is a type of artificial intelligence and machine learning that has become extremely important in the past few years. Deep Learning allows us to teach machines how to complete complex tasks without explicitly programming them to do so. As a result people with the ability to teach machines using deep learning are in extremely high demand. It is also leading to them getting huge increases in salaries. Deep Learning is revolutionizing the world around us and hence the need to understand and learn it becomes significant. In this book we shall cover what is deep learning, how you can get started with deep learning and what deep learning can do for you. By the end of this book you should be able to know what is deep learning and the tools technology and trends driving the artificial intelligence revolution. Several Visual Illustrations and Examples Instead of tough math formulas, this book contains several graphs and images, which detail all-important deep learning concepts and their applications. This Is a Practical Guide Book This book will help you explore exactly the most important deep learning techniques by using python and real data. It is a step-by-step book. You will build our Deep Learning Models by using Python Target Users The book designed for a variety of target audiences. The most suitable users would include: Beginners who want to approach data science, but are too afraid of complex math to start Newbies in computer science techniques and machine learning Professionals in data science and social sciences Professors, lecturers or tutors who are looking to find better ways to explain the content to their students in the simplest and easiest way Students and academicians, especially those focusing on data science What's Inside This Great Book? Introduction Deep Learning Techniques Applications Next Steps Practical Sentiment Analysis using TensorFlow with Neural Networks Performing Sequence Classification with RNNs Implementing Sequence Classification Using RNNs in TensorFlow Glossary of Some Useful Terms in Deep Learning Sources & References Bonus Chapter: Anaconda Setup & Python Crash Course Frequently Asked Questions Q: Is this book for me and do I need programming experience? A: f you want to smash Data Science from scratch, this book is for you. Little programming experience is required. If you already wrote a few lines of code and recognize basic programming statements, you'll be OK. Q: Can I loan this book to friends? A: Yes. Under Amazon's Kindle Book Lending program, you can lend this book to friends and family for a duration of 14 days. Q: Does this book include everything I need to become a data science expert? A: Unfortunately, no. This book is designed for readers taking their first steps in data science and further learning will be required beyond this book to master all aspects of data science. Q: Can I have a refund if this book is not fitted for me? A: Yes, Amazon refund you if you aren't satisfied, for more information about the amazon refund service please go to the amazon help platform. I will also be happy to help you if you send us an email at [email protected]

Einführung in Machine Learning mit Python

Praxiswissen Data Science

Author: Andreas C. Müller,Sarah Guido

Publisher: O'Reilly

ISBN: 3960101120

Category: Computers

Page: 378

View: 5087

Machine Learning ist zu einem wichtigen Bestandteil vieler kommerzieller Anwendungen und Forschungsprojekte geworden, von der medizinischen Diagnostik bis hin zur Suche nach Freunden in sozialen Netzwerken. Um Machine-Learning-Anwendungen zu entwickeln, braucht es keine großen Expertenteams: Wenn Sie Python-Grundkenntnisse mitbringen, zeigt Ihnen dieses Praxisbuch, wie Sie Ihre eigenen Machine-Learning-Lösungen erstellen. Mit Python und der scikit-learn-Bibliothek erarbeiten Sie sich alle Schritte, die für eine erfolgreiche Machine-Learning-Anwendung notwendig sind. Die Autoren Andreas Müller und Sarah Guido konzentrieren sich bei der Verwendung von Machine-Learning-Algorithmen auf die praktischen Aspekte statt auf die Mathematik dahinter. Wenn Sie zusätzlich mit den Bibliotheken NumPy und matplotlib vertraut sind, hilft Ihnen dies, noch mehr aus diesem Tutorial herauszuholen. Das Buch zeigt Ihnen: - grundlegende Konzepte und Anwendungen von Machine Learning - Vor- und Nachteile weit verbreiteter maschineller Lernalgorithmen - wie sich die von Machine Learning verarbeiteten Daten repräsentieren lassen und auf welche Aspekte der Daten Sie sich konzentrieren sollten - fortgeschrittene Methoden zur Auswertung von Modellen und zum Optimieren von Parametern - das Konzept von Pipelines, mit denen Modelle verkettet und Arbeitsabläufe gekapselt werden - Arbeitsmethoden für Textdaten, insbesondere textspezifische Verarbeitungstechniken - Möglichkeiten zur Verbesserung Ihrer Fähigkeiten in den Bereichen Machine Learning und Data Science Dieses Buch ist eine fantastische, super praktische Informationsquelle für jeden, der mit Machine Learning in Python starten möchte – ich wünschte nur, es hätte schon existiert, als ich mit scikit-learn anfing! Hanna Wallach, Senior Researcher, Microsoft Research

Hands-On Reinforcement Learning with Python

Master reinforcement and deep reinforcement learning using OpenAI Gym and TensorFlow

Author: Sudharsan Ravichandiran

Publisher: Packt Publishing Ltd

ISBN: 178883691X

Category: Computers

Page: 318

View: 1598

A hands-on guide enriched with examples to master deep reinforcement learning algorithms with Python Key Features Your entry point into the world of artificial intelligence using the power of Python An example-rich guide to master various RL and DRL algorithms Explore various state-of-the-art architectures along with math Book Description Reinforcement Learning (RL) is the trending and most promising branch of artificial intelligence. Hands-On Reinforcement learning with Python will help you master not only the basic reinforcement learning algorithms but also the advanced deep reinforcement learning algorithms. The book starts with an introduction to Reinforcement Learning followed by OpenAI Gym, and TensorFlow. You will then explore various RL algorithms and concepts, such as Markov Decision Process, Monte Carlo methods, and dynamic programming, including value and policy iteration. This example-rich guide will introduce you to deep reinforcement learning algorithms, such as Dueling DQN, DRQN, A3C, PPO, and TRPO. You will also learn about imagination-augmented agents, learning from human preference, DQfD, HER, and many more of the recent advancements in reinforcement learning. By the end of the book, you will have all the knowledge and experience needed to implement reinforcement learning and deep reinforcement learning in your projects, and you will be all set to enter the world of artificial intelligence. What you will learn Understand the basics of reinforcement learning methods, algorithms, and elements Train an agent to walk using OpenAI Gym and Tensorflow Understand the Markov Decision Process, Bellman’s optimality, and TD learning Solve multi-armed-bandit problems using various algorithms Master deep learning algorithms, such as RNN, LSTM, and CNN with applications Build intelligent agents using the DRQN algorithm to play the Doom game Teach agents to play the Lunar Lander game using DDPG Train an agent to win a car racing game using dueling DQN Who this book is for If you’re a machine learning developer or deep learning enthusiast interested in artificial intelligence and want to learn about reinforcement learning from scratch, this book is for you. Some knowledge of linear algebra, calculus, and the Python programming language will help you understand the concepts covered in this book.

Recurrent Neural Networks with Python Quick Start Guide

Sequential learning and language modeling with TensorFlow

Author: Simeon Kostadinov

Publisher: Packt Publishing Ltd

ISBN: 1789133661

Category: Computers

Page: 122

View: 1094

Learn how to develop intelligent applications with sequential learning and apply modern methods for language modeling with neural network architectures for deep learning with Python's most popular TensorFlow framework. Key Features Train and deploy Recurrent Neural Networks using the popular TensorFlow library Apply long short-term memory units Expand your skills in complex neural network and deep learning topics Book Description Developers struggle to find an easy-to-follow learning resource for implementing Recurrent Neural Network (RNN) models. RNNs are the state-of-the-art model in deep learning for dealing with sequential data. From language translation to generating captions for an image, RNNs are used to continuously improve results. This book will teach you the fundamentals of RNNs, with example applications in Python and the TensorFlow library. The examples are accompanied by the right combination of theoretical knowledge and real-world implementations of concepts to build a solid foundation of neural network modeling. Your journey starts with the simplest RNN model, where you can grasp the fundamentals. The book then builds on this by proposing more advanced and complex algorithms. We use them to explain how a typical state-of-the-art RNN model works. From generating text to building a language translator, we show how some of today's most powerful AI applications work under the hood. After reading the book, you will be confident with the fundamentals of RNNs, and be ready to pursue further study, along with developing skills in this exciting field. What you will learn Use TensorFlow to build RNN models Use the correct RNN architecture for a particular machine learning task Collect and clear the training data for your models Use the correct Python libraries for any task during the building phase of your model Optimize your model for higher accuracy Identify the differences between multiple models and how you can substitute them Learn the core deep learning fundamentals applicable to any machine learning model Who this book is for This book is for Machine Learning engineers and data scientists who want to learn about Recurrent Neural Network models with practical use-cases. Exposure to Python programming is required. Previous experience with TensorFlow will be helpful, but not mandatory.

Machine Learning with Python Cookbook

Practical Solutions from Preprocessing to Deep Learning

Author: Chris Albon

Publisher: "O'Reilly Media, Inc."

ISBN: 1491989335

Category: Computers

Page: 366

View: 3782

This practical guide provides nearly 200 self-contained recipes to help you solve machine learning challenges you may encounter in your daily work. If you’re comfortable with Python and its libraries, including pandas and scikit-learn, you’ll be able to address specific problems such as loading data, handling text or numerical data, model selection, and dimensionality reduction and many other topics. Each recipe includes code that you can copy and paste into a toy dataset to ensure that it actually works. From there, you can insert, combine, or adapt the code to help construct your application. Recipes also include a discussion that explains the solution and provides meaningful context. This cookbook takes you beyond theory and concepts by providing the nuts and bolts you need to construct working machine learning applications. You’ll find recipes for: Vectors, matrices, and arrays Handling numerical and categorical data, text, images, and dates and times Dimensionality reduction using feature extraction or feature selection Model evaluation and selection Linear and logical regression, trees and forests, and k-nearest neighbors Support vector machines (SVM), naïve Bayes, clustering, and neural networks Saving and loading trained models

Large Scale Machine Learning with Python

Author: Bastiaan Sjardin,Luca Massaron,Alberto Boschetti

Publisher: Packt Publishing Ltd

ISBN: 1785888021

Category: Computers

Page: 420

View: 5577

Learn to build powerful machine learning models quickly and deploy large-scale predictive applications About This Book Design, engineer and deploy scalable machine learning solutions with the power of Python Take command of Hadoop and Spark with Python for effective machine learning on a map reduce framework Build state-of-the-art models and develop personalized recommendations to perform machine learning at scale Who This Book Is For This book is for anyone who intends to work with large and complex data sets. Familiarity with basic Python and machine learning concepts is recommended. Working knowledge in statistics and computational mathematics would also be helpful. What You Will Learn Apply the most scalable machine learning algorithms Work with modern state-of-the-art large-scale machine learning techniques Increase predictive accuracy with deep learning and scalable data-handling techniques Improve your work by combining the MapReduce framework with Spark Build powerful ensembles at scale Use data streams to train linear and non-linear predictive models from extremely large datasets using a single machine In Detail Large Python machine learning projects involve new problems associated with specialized machine learning architectures and designs that many data scientists have yet to tackle. But finding algorithms and designing and building platforms that deal with large sets of data is a growing need. Data scientists have to manage and maintain increasingly complex data projects, and with the rise of big data comes an increasing demand for computational and algorithmic efficiency. Large Scale Machine Learning with Python uncovers a new wave of machine learning algorithms that meet scalability demands together with a high predictive accuracy. Dive into scalable machine learning and the three forms of scalability. Speed up algorithms that can be used on a desktop computer with tips on parallelization and memory allocation. Get to grips with new algorithms that are specifically designed for large projects and can handle bigger files, and learn about machine learning in big data environments. We will also cover the most effective machine learning techniques on a map reduce framework in Hadoop and Spark in Python. Style and Approach This efficient and practical title is stuffed full of the techniques, tips and tools you need to ensure your large scale Python machine learning runs swiftly and seamlessly. Large-scale machine learning tackles a different issue to what is currently on the market. Those working with Hadoop clusters and in data intensive environments can now learn effective ways of building powerful machine learning models from prototype to production. This book is written in a style that programmers from other languages (R, Julia, Java, Matlab) can follow.