Deformation Theory

Author: Robin Hartshorne

Publisher: Springer Science & Business Media

ISBN: 1441915958

Category: Mathematics

Page: 234

View: 4570

The basic problem of deformation theory in algebraic geometry involves watching a small deformation of one member of a family of objects, such as varieties, or subschemes in a fixed space, or vector bundles on a fixed scheme. In this new book, Robin Hartshorne studies first what happens over small infinitesimal deformations, and then gradually builds up to more global situations, using methods pioneered by Kodaira and Spencer in the complex analytic case, and adapted and expanded in algebraic geometry by Grothendieck. The author includes numerous exercises, as well as important examples illustrating various aspects of the theory. This text is based on a graduate course taught by the author at the University of California, Berkeley.

Combinatorial Convexity and Algebraic Geometry

Author: Günter Ewald

Publisher: Springer Science & Business Media

ISBN: 1461240441

Category: Mathematics

Page: 374

View: 8224

The book is an introduction to the theory of convex polytopes and polyhedral sets, to algebraic geometry, and to the connections between these fields, known as the theory of toric varieties. The first part of the book covers the theory of polytopes and provides large parts of the mathematical background of linear optimization and of the geometrical aspects in computer science. The second part introduces toric varieties in an elementary way.

Deformation Theory of Algebras and Their Diagrams

Author: Martin Markl

Publisher: American Mathematical Soc.

ISBN: 0821889796

Category: Mathematics

Page: 129

View: 4878

This book brings together both the classical and current aspects of deformation theory. The presentation is mostly self-contained, assuming only basic knowledge of commutative algebra, homological algebra and category theory. In the interest of readability, some technically complicated proofs have been omitted when a suitable reference was available. The relation between the uniform continuity of algebraic maps and topologized tensor products is explained in detail, however, as this subject does not seem to be commonly known and the literature is scarce. The exposition begins by recalling Gerstenhaber's classical theory for associative algebras. The focus then shifts to a homotopy-invariant setup of Maurer-Cartan moduli spaces. As an application, Kontsevich's approach to deformation quantization of Poisson manifolds is reviewed. Then, after a brief introduction to operads, a strongly homotopy Lie algebra governing deformations of (diagrams of) algebras of a given type is described, followed by examples and generalizations.

Complex Algebraic Surfaces

Author: Arnaud Beauville

Publisher: Cambridge University Press

ISBN: 9780521498425

Category: Mathematics

Page: 132

View: 7603

The classification of algebraic surfaces is an intricate and fascinating branch of mathematics, developed over more than a century and still an active area of research today. In this book, Professor Beauville gives a lucid and concise account of the subject, expressed simply in the language of modern topology and sheaf theory, and accessible to any budding geometer. A chapter on preliminary material ensures that this volume is self-contained while the exercises succeed both in giving the flavor of the classical subject, and in equipping the reader with the techniques needed for research. The book is aimed at graduate students in geometry and topology.

A Course in the Theory of Groups

Author: Derek Robinson

Publisher: Springer Science & Business Media

ISBN: 1468401289

Category: Mathematics

Page: 481

View: 1433

" A group is defined by means of the laws of combinations of its symbols," according to a celebrated dictum of Cayley. And this is probably still as good a one-line explanation as any. The concept of a group is surely one of the central ideas of mathematics. Certainly there are a few branches of that science in which groups are not employed implicitly or explicitly. Nor is the use of groups confined to pure mathematics. Quantum theory, molecular and atomic structure, and crystallography are just a few of the areas of science in which the idea of a group as a measure of symmetry has played an important part. The theory of groups is the oldest branch of modern algebra. Its origins are to be found in the work of Joseph Louis Lagrange (1736-1813), Paulo Ruffini (1765-1822), and Evariste Galois (1811-1832) on the theory of algebraic equations. Their groups consisted of permutations of the variables or of the roots of polynomials, and indeed for much of the nineteenth century all groups were finite permutation groups. Nevertheless many of the fundamental ideas of group theory were introduced by these early workers and their successors, Augustin Louis Cauchy (1789-1857), Ludwig Sylow (1832-1918), Camille Jordan (1838-1922) among others. The concept of an abstract group is clearly recognizable in the work of Arthur Cayley (1821-1895) but it did not really win widespread acceptance until Walther von Dyck (1856-1934) introduced presentations of groups.

Classical Topology and Combinatorial Group Theory

Author: John Stillwell

Publisher: Springer Science & Business Media

ISBN: 1461243726

Category: Mathematics

Page: 336

View: 1812

In recent years, many students have been introduced to topology in high school mathematics. Having met the Mobius band, the seven bridges of Konigsberg, Euler's polyhedron formula, and knots, the student is led to expect that these picturesque ideas will come to full flower in university topology courses. What a disappointment "undergraduate topology" proves to be! In most institutions it is either a service course for analysts, on abstract spaces, or else an introduction to homological algebra in which the only geometric activity is the completion of commutative diagrams. Pictures are kept to a minimum, and at the end the student still does nr~ understand the simplest topological facts, such as the rcason why knots exist. In my opinion, a well-balanced introduction to topology should stress its intuitive geometric aspect, while admitting the legitimate interest that analysts and algebraists have in the subject. At any rate, this is the aim of the present book. In support of this view, I have followed the historical development where practicable, since it clearly shows the influence of geometric thought at all stages. This is not to claim that topology received its main impetus from geometric recreations like the seven bridges; rather, it resulted from the l'isualization of problems from other parts of mathematics-complex analysis (Riemann), mechanics (Poincare), and group theory (Dehn). It is these connec tions to other parts of mathematics which make topology an important as well as a beautiful subject.

Arithmetic and Geometry Around Galois Theory

Author: Pierre Dèbes,Michel Emsalem,Matthieu Romagny,A. Muhammed Uludağ

Publisher: Springer Science & Business Media

ISBN: 3034804873

Category: Mathematics

Page: 404

View: 9890

This Lecture Notes volume is the fruit of two research-level summer schools jointly organized by the GTEM node at Lille University and the team of Galatasaray University (Istanbul): "Geometry and Arithmetic of Moduli Spaces of Coverings (2008)" and "Geometry and Arithmetic around Galois Theory (2009)". The volume focuses on geometric methods in Galois theory. The choice of the editors is to provide a complete and comprehensive account of modern points of view on Galois theory and related moduli problems, using stacks, gerbes and groupoids. It contains lecture notes on étale fundamental group and fundamental group scheme, and moduli stacks of curves and covers. Research articles complete the collection.​

Measure Theory

Author: Paul R. Halmos

Publisher: Springer

ISBN: 1468494406

Category: Mathematics

Page: 304

View: 9547

Useful as a text for students and a reference for the more advanced mathematician, this book presents a unified treatment of that part of measure theory most useful for its application in modern analysis. Coverage includes sets and classes, measures and outer measures, Haar measure and measure and topology in groups. From the reviews: "Will serve the interested student to find his way to active and creative work in the field of Hilbert space theory." --MATHEMATICAL REVIEWS

Quantum Groups

Author: Christian Kassel

Publisher: Springer Science & Business Media

ISBN: 1461207835

Category: Mathematics

Page: 534

View: 5189

Here is an introduction to the theory of quantum groups with emphasis on the spectacular connections with knot theory and Drinfeld's recent fundamental contributions. It presents the quantum groups attached to SL2 as well as the basic concepts of the theory of Hopf algebras. Coverage also focuses on Hopf algebras that produce solutions of the Yang-Baxter equation and provides an account of Drinfeld's elegant treatment of the monodromy of the Knizhnik-Zamolodchikov equations.

p-Adic Automorphic Forms on Shimura Varieties

Author: Haruzo Hida

Publisher: Springer Science & Business Media

ISBN: 1468493906

Category: Mathematics

Page: 390

View: 7018

In the early years of the 1980s, while I was visiting the Institute for Ad vanced Study (lAS) at Princeton as a postdoctoral member, I got a fascinating view, studying congruence modulo a prime among elliptic modular forms, that an automorphic L-function of a given algebraic group G should have a canon ical p-adic counterpart of several variables. I immediately decided to find out the reason behind this phenomenon and to develop the theory of ordinary p-adic automorphic forms, allocating 10 to 15 years from that point, putting off the intended arithmetic study of Shimura varieties via L-functions and Eisenstein series (for which I visited lAS). Although it took more than 15 years, we now know (at least conjecturally) the exact number of variables for a given G, and it has been shown that this is a universal phenomenon valid for holomorphic automorphic forms on Shimura varieties and also for more general (nonholomorphic) cohomological automorphic forms on automorphic manifolds (in a markedly different way). When I was asked to give a series of lectures in the Automorphic Semester in the year 2000 at the Emile Borel Center (Centre Emile Borel) at the Poincare Institute in Paris, I chose to give an exposition of the theory of p-adic (ordinary) families of such automorphic forms p-adic analytically de pending on their weights, and this book is the outgrowth of the lectures given there.

Hopf Algebras and Their Actions on Rings

Author: Susan Montgomery

Publisher: American Mathematical Soc.

ISBN: 0821807382

Category: Mathematics

Page: 238

View: 841

The last ten years have seen a number of significant advances in Hopf algebras. The best known is the introduction of quantum groups, which are Hopf algebras that arose in mathematical physics and now have connections to many areas of mathematics. In addition, several conjectures of Kaplansky have been solved, the most striking of which is a kind of Lagrange's theorem for Hopf algebras. Work on actions of Hopf algebras has unified earlier results on group actions, actions of Lie algebras, and graded algebras. This book brings together many of these recent developments from the viewpoint of the algebraic structure of Hopf algebras and their actions and coactions. Quantum groups are treated as an important example, rather than as an end in themselves. The two introductory chapters review definitions and basic facts; otherwise, most of the material has not previously appeared in book form. Providing an accessible introduction to Hopf algebras, this book would make an excellent graduate textbook for a course in Hopf algebras or an introduction to quantum groups.

3264 and All That

A Second Course in Algebraic Geometry

Author: David Eisenbud,Joe Harris

Publisher: Cambridge University Press

ISBN: 1107017084

Category: Mathematics

Page: 632

View: 5278

This book can form the basis of a second course in algebraic geometry. As motivation, it takes concrete questions from enumerative geometry and intersection theory, and provides intuition and technique, so that the student develops the ability to solve geometric problems. The authors explain key ideas, including rational equivalence, Chow rings, Schubert calculus and Chern classes, and readers will appreciate the abundant examples, many provided as exercises with solutions available online. Intersection is concerned with the enumeration of solutions of systems of polynomial equations in several variables. It has been an active area of mathematics since the work of Leibniz. Chasles' nineteenth-century calculation that there are 3264 smooth conic plane curves tangent to five given general conics was an important landmark, and was the inspiration behind the title of this book. Such computations were motivation for Poincaré's development of topology, and for many subsequent theories, so that intersection theory is now a central topic of modern mathematics.

Algebraic Operads

Author: Jean-Louis Loday,Bruno Vallette

Publisher: Springer Science & Business Media

ISBN: 3642303625

Category: Mathematics

Page: 636

View: 4991

In many areas of mathematics some “higher operations” are arising. These havebecome so important that several research projects refer to such expressions. Higher operationsform new types of algebras. The key to understanding and comparing them, to creating invariants of their action is operad theory. This is a point of view that is 40 years old in algebraic topology, but the new trend is its appearance in several other areas, such as algebraic geometry, mathematical physics, differential geometry, and combinatorics. The present volume is the first comprehensive and systematic approach to algebraic operads. An operad is an algebraic device that serves to study all kinds of algebras (associative, commutative, Lie, Poisson, A-infinity, etc.) from a conceptual point of view. The book presents this topic with an emphasis on Koszul duality theory. After a modern treatment of Koszul duality for associative algebras, the theory is extended to operads. Applications to homotopy algebra are given, for instance the Homotopy Transfer Theorem. Although the necessary notions of algebra are recalled, readers are expected to be familiar with elementary homological algebra. Each chapter ends with a helpful summary and exercises. A full chapter is devoted to examples, and numerous figures are included. After a low-level chapter on Algebra, accessible to (advanced) undergraduate students, the level increases gradually through the book. However, the authors have done their best to make it suitable for graduate students: three appendices review the basic results needed in order to understand the various chapters. Since higher algebra is becoming essential in several research areas like deformation theory, algebraic geometry, representation theory, differential geometry, algebraic combinatorics, and mathematical physics, the book can also be used as a reference work by researchers.

Homotopical Algebra

Author: Daniel G. Quillen

Publisher: Springer

ISBN: 3540355235

Category: Mathematics

Page: 160

View: 7896

Algebraic Number Theory

Author: Ian Stewart

Publisher: Springer

ISBN: 9780412138409

Category: Science

Page: 257

View: 5252

The title of this book may be read in two ways. One is 'algebraic number-theory', that is, the theory of numbers viewed algebraically; the other, 'algebraic-number theory', the study of algebraic numbers. Both readings are compatible with our aims, and both are perhaps misleading. Misleading, because a proper coverage of either topic would require more space than is available, and demand more of the reader than we wish to; compatible, because our aim is to illustrate how some of the basic notions of the theory of algebraic numbers may be applied to problems in number theory. Algebra is an easy subject to compartmentalize, with topics such as 'groups', 'rings' or 'modules' being taught in comparative isolation. Many students view it this way. While it would be easy to exaggerate this tendency, it is not an especially desirable one. The leading mathematicians of the nineteenth and early twentieth centuries developed and used most of the basic results and techniques of linear algebra for perhaps a hundred years, without ever defining an abstract vector space: nor is there anything to suggest that they suf fered thereby. This historical fact may indicate that abstrac tion is not always as necessary as one commonly imagines; on the other hand the axiomatization of mathematics has led to enormous organizational and conceptual gains.

Modular Forms and Fermat’s Last Theorem

Author: Gary Cornell,Joseph H. Silverman,Glenn Stevens

Publisher: Springer Science & Business Media

ISBN: 1461219744

Category: Mathematics

Page: 582

View: 5231

This volume contains the expanded lectures given at a conference on number theory and arithmetic geometry held at Boston University. It introduces and explains the many ideas and techniques used by Wiles, and to explain how his result can be combined with Ribets theorem and ideas of Frey and Serre to prove Fermats Last Theorem. The book begins with an overview of the complete proof, followed by several introductory chapters surveying the basic theory of elliptic curves, modular functions and curves, Galois cohomology, and finite group schemes. Representation theory, which lies at the core of the proof, is dealt with in a chapter on automorphic representations and the Langlands-Tunnell theorem, and this is followed by in-depth discussions of Serres conjectures, Galois deformations, universal deformation rings, Hecke algebras, and complete intersections. The book concludes by looking both forward and backward, reflecting on the history of the problem, while placing Wiles'theorem into a more general Diophantine context suggesting future applications. Students and professional mathematicians alike will find this an indispensable resource.

Algebraic Geometry

Author: Robin Hartshorne

Publisher: Springer Science & Business Media

ISBN: 1475738498

Category: Mathematics

Page: 496

View: 6880

An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.

Fundamental Algebraic Geometry

Grothendieck's FGA Explained

Author: Barbara Fantechi

Publisher: American Mathematical Soc.

ISBN: 0821842455

Category: Mathematics

Page: 339

View: 5907

Alexander Grothendieck introduced many concepts into algebraic geometry; they turned out to be astoundingly powerful and productive and truly revolutionized the subject. Grothendieck sketched his new theories in a series of talks at the Seminaire Bourbaki between 1957 and 1962 and collected his write-ups in a volume entitled ``Fondements de la Geometrie Algebrique,'' known as FGA. Much of FGA is now common knowledge; however, some of FGA is less well known, and its full scope is familiar to few. The present book resulted from the 2003 ``Advanced School in Basic Algebraic Geometry'' at the ICTP in Trieste, Italy. The book aims to fill in Grothendieck's brief sketches. There are four themes: descent theory, Hilbert and Quot schemes, the formal existence theorem, and the Picard scheme. Most results are proved in full detail; furthermore, newer ideas are introduced to promote understanding, and many connections are drawn to newer developments. The main prerequisite is a thorough acquaintance with basic scheme theory. Thus this book is a valuable resource for anyone doing algebraic geometry.