# Differential Geometry of Curves and Surfaces

Revised and Updated Second Edition

Author: Manfredo P. do Carmo

Publisher: Courier Dover Publications

ISBN: 0486806995

Category: Mathematics

Page: 512

View: 7417

One of the most widely used texts in its field, this volume introduces the differential geometry of curves and surfaces in both local and global aspects. The presentation departs from the traditional approach with its more extensive use of elementary linear algebra and its emphasis on basic geometrical facts rather than machinery or random details. Many examples and exercises enhance the clear, well-written exposition, along with hints and answers to some of the problems. The treatment begins with a chapter on curves, followed by explorations of regular surfaces, the geometry of the Gauss map, the intrinsic geometry of surfaces, and global differential geometry. Suitable for advanced undergraduates and graduate students of mathematics, this text's prerequisites include an undergraduate course in linear algebra and some familiarity with the calculus of several variables. For this second edition, the author has corrected, revised, and updated the entire volume.

# Differentialgeometrie von Kurven und Flächen

Author: Manfredo P. do Carmo

Publisher: Springer-Verlag

ISBN: 3322850722

Category: Technology & Engineering

Page: 263

View: 6003

Inhalt: Kurven - Reguläre Flächen - Die Geometrie der Gauß-Abbildung - Die innere Geometrie von Flächen - Anhang

# Differentialgeometrie

Kurven - Flächen - Mannigfaltigkeiten

Author: Wolfgang Kühnel

Publisher: Springer-Verlag

ISBN: 3658006153

Category: Mathematics

Page: 284

View: 5906

Dieses Buch ist eine Einführung in die Differentialgeometrie und ein passender Begleiter zum Differentialgeometrie-Modul (ein- und zweisemestrig). Zunächst geht es um die klassischen Aspekte wie die Geometrie von Kurven und Flächen, bevor dann höherdimensionale Flächen sowie abstrakte Mannigfaltigkeiten betrachtet werden. Die Nahtstelle ist dabei das zentrale Kapitel "Die innere Geometrie von Flächen". Dieses führt den Leser bis hin zu dem berühmten Satz von Gauß-Bonnet, der ein entscheidendes Bindeglied zwischen lokaler und globaler Geometrie darstellt. Die zweite Hälfte des Buches ist der Riemannschen Geometrie gewidmet. Den Abschluss bildet ein Kapitel über "Einstein-Räume", die eine große Bedeutung sowohl in der "Reinen Mathematik" als auch in der Allgemeinen Relativitätstheorie von A. Einstein haben. Es wird großer Wert auf Anschaulichkeit gelegt, was durch zahlreiche Abbildungen unterstützt wird. Bei der Neuauflage wurden einige zusätzliche Lösungen zu den Übungsaufgaben ergänzt.

# Finite-Elemente-Methoden

Author: Klaus-Jürgen Bathe

Publisher: DrMaster Publications

ISBN: 9783540668060

Category: Technology & Engineering

Page: 1253

View: 6919

Dieses Lehr- und Handbuch behandelt sowohl die elementaren Konzepte als auch die fortgeschrittenen und zukunftsweisenden linearen und nichtlinearen FE-Methoden in Statik, Dynamik, Festkörper- und Fluidmechanik. Es wird sowohl der physikalische als auch der mathematische Hintergrund der Prozeduren ausführlich und verständlich beschrieben. Das Werk enthält eine Vielzahl von ausgearbeiteten Beispielen, Rechnerübungen und Programmlisten. Als Übersetzung eines erfolgreichen amerikanischen Lehrbuchs hat es sich in zwei Auflagen auch bei den deutschsprachigen Ingenieuren etabliert. Die umfangreichen Änderungen gegenüber der Vorauflage innerhalb aller Kapitel - vor allem aber der fortgeschrittenen - spiegeln die rasche Entwicklung innerhalb des letzten Jahrzehnts auf diesem Gebiet wieder. TOC:Eine Einführung in den Gebrauch von Finite-Elemente-Verfahren.-Vektoren, Matrizen und Tensoren.-Einige Grundbegriffe ingenieurwissenschaftlicher Berechnungen.-Formulierung der Methode der finiten Elemente.-Formulierung und Berechnung von isoparametrischen Finite-Elemente-Matrizen.-Nichtlineare Finite-Elemente-Berechnungen in der Festkörper- und Strukturmechanik.-Finite-Elemente-Berechnungen von Wärmeübertragungs- und Feldproblemen.-Lösung von Gleichgewichtsbeziehungen in statischen Berechnungen.-Lösung von Bewegungsgleichungen in kinetischen Berechnungen.-Vorbemerkungen zur Lösung von Eigenproblemen.-Lösungsverfahren für Eigenprobleme.-Implementierung der Finite-Elemente-Methode.

# Anschauliche Funktionentheorie

Author: Tristan Needham

Publisher: Oldenbourg Verlag

ISBN: 348670902X

Category: Mathematics

Page: 685

View: 3078

Needhams neuartiger Zugang zur Funktionentheorie wurde von der Fachpresse begeistert aufgenommen. Mit über 500 zum großen Teil perspektivischen Grafiken vermittelt er im wahrsten Sinne des Wortes eine Anschauung von der sonst oft als trocken empfundenen Funktionentheorie. "Anschauliche Funktionentheorie ist eine wahre Freude und ein Buch so recht nach meinem Herzen. Indem er ausschließlich seine neuartige geometrische Perspektive verwendet, enthüllt Tristan Needham viele überraschende und bisher weitgehend unbeachtete Facetten der Schönheit der Funktionentheorie." (Sir Roger Penrose)

# English love poems

Author: Eva-Maria König

Publisher: N.A

ISBN: 9783150092835

Category:

Page: 80

View: 6491

# Der absolute Differentialkalkül und seine Anwendungen in Geometrie und Physik

Author: Tullio Levi-Civita

Publisher: N.A

ISBN: N.A

Category: Calculus of tensors

Page: 310

View: 8725

# Partielle Differentialgleichungen

Eine Einführung

Author: Walter A. Strauss

Publisher: Springer-Verlag

ISBN: 366312486X

Category: Mathematics

Page: 458

View: 2510

Dieses Buch ist eine umfassende Einführung in die klassischen Lösungsmethoden partieller Differentialgleichungen. Es wendet sich an Leser mit Kenntnissen aus einem viersemestrigen Grundstudium der Mathematik (und Physik) und legt seinen Schwerpunkt auf die explizite Darstellung der Lösungen. Es ist deshalb besonders auch für Anwender (Physiker, Ingenieure) sowie für Nichtspezialisten, die die Methoden der mathematischen Physik kennenlernen wollen, interessant. Durch die große Anzahl von Beispielen und Übungsaufgaben eignet es sich gut zum Gebrauch neben Vorlesungen sowie zum Selbststudium.

# Methoden der mathematischen physik

Author: Richard Courant,David Hilbert

Publisher: N.A

ISBN: N.A

Category: Mathematical physics

Page: N.A

View: 2398

# Unvergängliche Geometrie

Author: H.S. Coxeter

Publisher: Springer-Verlag

ISBN: 3034851510

Category: Juvenile Nonfiction

Page: 558

View: 6602

# Meine Zahlen, meine Freunde

Glanzlichter der Zahlentheorie

Author: Paulo Ribenboim

Publisher: Springer-Verlag

ISBN: 3540879579

Category: Mathematics

Page: 391

View: 4748

Paulo Ribenboim behandelt Zahlen in dieser außergewöhnlichen Sammlung von Übersichtsartikeln wie seine persönlichen Freunde. In leichter und allgemein zugänglicher Sprache berichtet er über Primzahlen, Fibonacci-Zahlen (und das Nordpolarmeer!), die klassischen Arbeiten von Gauß über binäre quadratische Formen, Eulers berühmtes primzahlerzeugendes Polynom, irrationale und transzendente Zahlen. Nach dem großen Erfolg von „Die Welt der Primzahlen" ist dies das zweite Buch von Paulo Ribenboim, das in deutscher Sprache erscheint.

# Allgemeine Flächentheorie

(Disquisitiones Generales Circa Superficies Curvas)

Author: Carl Friedrich Gauss,A. Wangerin

Publisher: N.A

ISBN: 9780649765799

Category:

Page: 74

View: 470

# Moderne Physik

Author: Paul Allen Tipler,Ralph A. Llewellyn

Publisher: Oldenbourg Verlag

ISBN: 9783486582758

Category: Physics

Page: 963

View: 2148

Immer mehr deutsche Hochschulen folgen dem amerikanischen Vorbild und bieten Einführungskurse zur Modernen Physik an. Diese Kurse vermitteln die spannenden Erkenntnisse der Physik der letzten 100 Jahre, die zu bahnbrechenden Veränderungen geführt haben. Das Standardwerk zu diesen Kursen ist "Modern Physics" von Paul A. Tipler, Autor des berühmten Werkes "Physik", und Ralph A. Llewellyn. Die Autoren zeigen, dass man ein tief gehendes Verständnis der Modernen Physik vermitteln kann, ohne einen schwerfälligen mathematischen Apparat bemühen zu müssen. Mit über 500 Abbildungen, Zitaten berühmter Physiker sowie mit ca. 700 sorgfältig ausgewählten Übungsaufgaben und über das Internet zugänglichen Ergänzungen wurde "Modern Physics" in den USA zu einem der beliebtesten Lehrbücher zu diesem Thema.

# Einführung in die Differentialtopologie

Korrigierter Nachdruck

Author: Theodor Bröcker,Klaus Jänich

Publisher: Springer

ISBN: 9783540064619

Category: Mathematics

Page: 168

View: 6450

Das Ziel dieses Buches ist, die eigentlich elementargeometrischen Methoden der Differentialtopologie darzustellen. Es richtet sich an Studenten mit Grundkenntnissen in Analysis und allgemeiner Topologie. Wir beweisen Einbettungs-, Isotopie-und Transversalitätssätze und behandeln als wichtige Techniken den Satz von Sard, Partitionen der Eins, dynamische Systeme und (nach Serge Langs Vorbild) Sprays, die zusammenhängende Summe, Tubenumgebungen, Kra­ gen und das Zusammenkleben von berandeten Mannigfaltigkeiten längs des Randes. Wir haben, wie wohl heute jeder jüngere Topologe, aus Milnors Schriften [4, 5, 6J selbst viel gelernt, wovon sich mancherlei Spuren im Text finden, und auch Serge Langs vorzügliche Darstellung [3J haben wir gelegentlich benutzt - was ängstlich zu vermeiden einem Buch über Differentialtopologie ja auch nicht gut tun könnte. Die jedem Kapitel reichlich beigefügten Übungsaufgaben sind für einen Anfänger nicht immer leicht; im Text werden sie nicht be­ nutzt. Nicht behandelt sind in diesem Buch die Analysis auf Mannig­ faltigkeiten (Satz von Stokes), die Morse-Theorie, die algebraische Topologie der Mannigfaltigkeiten und die Bordismentheorie. Wir hoffen aber, daß sich unser Buch als eine solide Grundlage für die nähere Bekanntschaft mit diesen weiterführenden Gebieten der Differentialtopologie erweisen wird. In diesem korrigierten Nachdruck sind zahlreiche kleine Versehen, die uns bekanntgeworden sind, berichtigt und einige Aufgaben hin­ zugekommen. Für Hinweise danken wir Kollegen und vielen interes­ sierten Lesern. Theodor Bröckt'r Regensburg, im August 1990 Klaus Jänich Inhaltsverzeichnis 1. Mannigfaltigkeiten und differenzierbare Strukturen. Ii 13 2. Der Tangentialraum ~ 3. Vektorraumbündel . 22 * 4. Lineare Algebra für Vektorraumbündel 34 ~ Lokale und tangentiale Eigenschaften. 45 5.

# Vorlesungen über partielle Differentialgleichungen

Author: Vladimir I. Arnold

Publisher: Springer-Verlag

ISBN: 3540350314

Category: Mathematics

Page: 174

View: 6802

Nach seinem bekannten und viel verwendeten Buch über gewöhnliche Differentialgleichungen widmet sich der berühmte Mathematiker Vladimir Arnold nun den partiellen Differentialgleichungen in einem neuen Lehrbuch. In seiner unnachahmlich eleganten Art führt er über einen geometrischen, anschaulichen Weg in das Thema ein, und ermöglicht den Lesern so ein vertieftes Verständnis der Natur der partiellen Differentialgleichungen. Für Studierende der Mathematik und Physik ist dieses Buch ein Muss. Wie alle Bücher Vladimir Arnolds ist dieses Buch voller geometrischer Erkenntnisse. Arnold illustriert jeden Grundsatz mit einer Abbildung. Das Buch behandelt die elementarsten Teile des Fachgebiets and beschränkt sich hauptsächlich auf das Cauchy-Problem und das Neumann-Problems für die klassischen Lineargleichungen der mathematischen Physik, insbesondere auf die Laplace-Gleichung und die Wellengleichung, wobei die Wärmeleitungsgleichung und die Korteweg-de-Vries-Gleichung aber ebenfalls diskutiert werden. Die physikalische Intuition wird besonders hervorgehoben. Eine große Anzahl von Problemen ist übers ganze Buch verteilt, und ein ganzer Satz von Aufgaben findet sich am Ende. Was dieses Buch so einzigartig macht, ist das besondere Talent Arnolds, ein Thema aus einer neuen, frischen Perspektive zu beleuchten. Er lüftet gerne den Schleier der Verallgemeinerung, der so viele mathematische Texte umgibt, und enthüllt die im wesentlichen einfachen, intuitiven Ideen, die dem Thema zugrunde liegen. Das kann er besser als jeder andere mathematische Autor.

# Numerische Behandlung partieller Differentialgleichungen

Author: Christian Großmann,Hans-Görg Roos

Publisher: Springer-Verlag

ISBN: 9783519220893

Category: Mathematics

Page: 572

View: 4298

Mathematiker, Naturwissenschaftler und Ingenieure erhalten mit diesem Lehrbuch eine Einführung in die numerische Behandlung partieller Differentialgleichungen. Diskutiert werden die grundlegenden Verfahren - Finite Differenzen, Finite Volumen und Finite Elemente - für die wesentlichen Typen partieller Differentialgleichungen: elliptische, parabolische und hyperbolische Gleichungen. Einbezogen werden auch moderne Methoden zur Lösung der diskreten Probleme. Hinweise auf aktuelle Software sowie zahlreiche Beispiele und Übungsaufgaben runden diese Einführung ab.

# Vektoranalysis

Author: Klaus Jänich

Publisher: Springer-Verlag

ISBN: 3662107503

Category: Mathematics

Page: 277

View: 8369

Die Vektoranalysis handelt, in klassischer Darstellung, von Vektorfeldern, den Operatoren Gradient, Divergenz und Rotation, von Linien-, Flächen- und Volumenintegralen und von den Integralsätzen von Gauß, Stokes und Green. In moderner Fassung ist es der Cartansche Kalkül mit dem Satz von Stokes. Das vorliegende Buch vertritt grundsätzlich die moderne Herangehensweise, geht aber auch sorgfältig auf die klassische Notation und Auffassung ein. Das Buch richtet sich an Mathematik- und Physikstudenten ab dem zweiten Studienjahr, die mit den Grundbegriffen der Differential- und Integralrechnung in einer und mehreren Variablen sowie der Topologie vertraut sind. Der sehr persönliche Stil des Autors und die aus anderen Büchern bereits bekannten Lernhilfen, wie: viele Figuren, mehr als 50 kommentierte Übungsaufgaben, über 100 Tests mit Antworten, machen auch diesen Text zum Selbststudium hervorragend geeignet.

# Einführung in die Geometrie und Topologie

Author: Werner Ballmann

Publisher: Springer-Verlag

ISBN: 3034809018

Category: Mathematics

Page: 162

View: 5772

Das Buch bietet eine Einführung in die Topologie, Differentialtopologie und Differentialgeometrie. Es basiert auf Manuskripten, die in verschiedenen Vorlesungszyklen erprobt wurden. Im ersten Kapitel werden grundlegende Begriffe und Resultate aus der mengentheoretischen Topologie bereitgestellt. Eine Ausnahme hiervon bildet der Jordansche Kurvensatz, der für Polygonzüge bewiesen wird und eine erste Idee davon vermitteln soll, welcher Art tiefere topologische Probleme sind. Im zweiten Kapitel werden Mannigfaltigkeiten und Liesche Gruppen eingeführt und an einer Reihe von Beispielen veranschaulicht. Diskutiert werden auch Tangential- und Vektorraumbündel, Differentiale, Vektorfelder und Liesche Klammern von Vektorfeldern. Weiter vertieft wird diese Diskussion im dritten Kapitel, in dem die de Rhamsche Kohomologie und das orientierte Integral eingeführt und der Brouwersche Fixpunktsatz, der Jordan-Brouwersche Zerlegungssatz und die Integralformel von Stokes bewiesen werden. Das abschließende vierte Kapitel ist den Grundlagen der Differentialgeometrie gewidmet. Entlang der Entwicklungslinien, die die Geometrie der Kurven und Untermannigfaltigkeiten in Euklidischen Räumen durchlaufen hat, werden Zusammenhänge und Krümmung, die zentralen Konzepte der Differentialgeometrie, diskutiert. Den Höhepunkt bilden die Gaussgleichungen, die Version des theorema egregium von Gauss für Untermannigfaltigkeiten beliebiger Dimension und Kodimension. Das Buch richtet sich in erster Linie an Mathematik- und Physikstudenten im zweiten und dritten Studienjahr und ist als Vorlage für ein- oder zweisemestrige Vorlesungen geeignet.