Elements of Homotopy Theory

Author: George W. Whitehead

Publisher: Springer Science & Business Media

ISBN: 1461263182

Category: Mathematics

Page: 746

View: 5349

As the title suggests, this book is concerned with the elementary portion of the subject of homotopy theory. It is assumed that the reader is familiar with the fundamental group and with singular homology theory, including the Universal Coefficient and Kiinneth Theorems. Some acquaintance with manifolds and Poincare duality is desirable, but not essential. Anyone who has taught a course in algebraic topology is familiar with the fact that a formidable amount of technical machinery must be introduced and mastered before the simplest applications can be made. This phenomenon is also observable in the more advanced parts of the subject. I have attempted to short-circuit it by making maximal use of elementary methods. This approach entails a leisurely exposition in which brevity and perhaps elegance are sacrificed in favor of concreteness and ease of application. It is my hope that this approach will make homotopy theory accessible to workers in a wide range of other subjects-subjects in which its impact is beginning to be felt. It is a consequence of this approach that the order of development is to a certain extent historical. Indeed, if the order in which the results presented here does not strictly correspond to that in which they were discovered, it nevertheless does correspond to an order in which they might have been discovered had those of us who were working in the area been a little more perspicacious.

Modern Classical Homotopy Theory

Author: Jeffrey Strom

Publisher: American Mathematical Soc.

ISBN: 0821852868

Category: Mathematics

Page: 835

View: 433

The core of classical homotopy theory is a body of ideas and theorems that emerged in the 1950s and was later largely codified in the notion of a model category. This core includes the notions of fibration and cofibration; CW complexes; long fiber and cofiber sequences; loop spaces and suspensions; and so on. Brown's representability theorems show that homology and cohomology are also contained in classical homotopy theory. This text develops classical homotopy theory from a modern point of view, meaning that the exposition is informed by the theory of model categories and that homotopy limits and colimits play central roles. The exposition is guided by the principle that it is generally preferable to prove topological results using topology (rather than algebra). The language and basic theory of homotopy limits and colimits make it possible to penetrate deep into the subject with just the rudiments of algebra. The text does reach advanced territory, including the Steenrod algebra, Bott periodicity, localization, the Exponent Theorem of Cohen, Moore, and Neisendorfer, and Miller's Theorem on the Sullivan Conjecture. Thus the reader is given the tools needed to understand and participate in research at (part of) the current frontier of homotopy theory. Proofs are not provided outright. Rather, they are presented in the form of directed problem sets. To the expert, these read as terse proofs; to novices they are challenges that draw them in and help them to thoroughly understand the arguments.

Introduction to Homotopy Theory

Author: Martin Arkowitz

Publisher: Springer Science & Business Media

ISBN: 9781441973290

Category: Mathematics

Page: 344

View: 5750

This is a book in pure mathematics dealing with homotopy theory, one of the main branches of algebraic topology. The principal topics are as follows: Basic Homotopy; H-spaces and co-H-spaces; fibrations and cofibrations; exact sequences of homotopy sets, actions, and coactions; homotopy pushouts and pullbacks; classical theorems, including those of Serre, Hurewicz, Blakers-Massey, and Whitehead; homotopy Sets; homotopy and homology decompositions of spaces and maps; and obstruction theory. The underlying theme of the entire book is the Eckmann-Hilton duality theory. The book can be used as a text for the second semester of an advanced ungraduate or graduate algebraic topology course.

Rational Homotopy Theory

Author: Yves Felix,Stephen Halperin,J.-C. Thomas

Publisher: Springer Science & Business Media

ISBN: 146130105X

Category: Mathematics

Page: 539

View: 4320

Rational homotopy theory is a subfield of algebraic topology. Written by three authorities in the field, this book contains all the main theorems of the field with complete proofs. As both notation and techniques of rational homotopy theory have been considerably simplified, the book presents modern elementary proofs for many results that were proven ten or fifteen years ago.

Algebraic Topology

A First Course

Author: William Fulton

Publisher: Springer Science & Business Media

ISBN: 1461241804

Category: Mathematics

Page: 430

View: 908

To the Teacher. This book is designed to introduce a student to some of the important ideas of algebraic topology by emphasizing the re lations of these ideas with other areas of mathematics. Rather than choosing one point of view of modem topology (homotopy theory, simplicial complexes, singular theory, axiomatic homology, differ ential topology, etc.), we concentrate our attention on concrete prob lems in low dimensions, introducing only as much algebraic machin ery as necessary for the problems we meet. This makes it possible to see a wider variety of important features of the subject than is usual in a beginning text. The book is designed for students of mathematics or science who are not aiming to become practicing algebraic topol ogists-without, we hope, discouraging budding topologists. We also feel that this approach is in better harmony with the historical devel opment of the subject. What would we like a student to know after a first course in to pology (assuming we reject the answer: half of what one would like the student to know after a second course in topology)? Our answers to this have guided the choice of material, which includes: under standing the relation between homology and integration, first on plane domains, later on Riemann surfaces and in higher dimensions; wind ing numbers and degrees of mappings, fixed-point theorems; appli cations such as the Jordan curve theorem, invariance of domain; in dices of vector fields and Euler characteristics; fundamental groups

Topology and Geometry

Author: Glen E. Bredon

Publisher: Springer Science & Business Media

ISBN: 1475768486

Category: Mathematics

Page: 131

View: 2953

This book offers an introductory course in algebraic topology. Starting with general topology, it discusses differentiable manifolds, cohomology, products and duality, the fundamental group, homology theory, and homotopy theory. From the reviews: "An interesting and original graduate text in topology and geometry...a good lecturer can use this text to create a fine course....A beginning graduate student can use this text to learn a great deal of mathematics."—-MATHEMATICAL REVIEWS

Cohomology Operations and Applications in Homotopy Theory

Author: Robert E. Mosher,Martin C. Tangora

Publisher: Courier Corporation

ISBN: 0486466647

Category: Mathematics

Page: 214

View: 6955

Cohomology operations are at the center of a major area of activity in algebraic topology. This treatment explores the single most important variety of operations, the Steenrod squares. It constructs these operations, proves their major properties, and provides numerous applications, including several different techniques of homotopy theory useful for computation. 1968 edition.

Measure Theory

Author: Paul R. Halmos

Publisher: Springer

ISBN: 1468494406

Category: Mathematics

Page: 304

View: 7821

Useful as a text for students and a reference for the more advanced mathematician, this book presents a unified treatment of that part of measure theory most useful for its application in modern analysis. Coverage includes sets and classes, measures and outer measures, Haar measure and measure and topology in groups. From the reviews: "Will serve the interested student to find his way to active and creative work in the field of Hilbert space theory." --MATHEMATICAL REVIEWS

Fundamentals of Algebraic Topology

Author: Steven Weintraub

Publisher: Springer

ISBN: 1493918443

Category: Mathematics

Page: 163

View: 1596

This rapid and concise presentation of the essential ideas and results of algebraic topology follows the axiomatic foundations pioneered by Eilenberg and Steenrod. The approach of the book is pragmatic: while most proofs are given, those that are particularly long or technical are omitted, and results are stated in a form that emphasizes practical use over maximal generality. Moreover, to better reveal the logical structure of the subject, the separate roles of algebra and topology are illuminated. Assuming a background in point-set topology, Fundamentals of Algebraic Topology covers the canon of a first-year graduate course in algebraic topology: the fundamental group and covering spaces, homology and cohomology, CW complexes and manifolds, and a short introduction to homotopy theory. Readers wishing to deepen their knowledge of algebraic topology beyond the fundamentals are guided by a short but carefully annotated bibliography.

Elements of Homology Theory

Author: Viktor Vasilʹevich Prasolov

Publisher: American Mathematical Soc.

ISBN: 0821838121

Category: Mathematics

Page: 418

View: 7295

The book is a continuation of the previous book by the author (Elements of Combinatorial and Differential Topology, Graduate Studies in Mathematics, Volume 74, American Mathematical Society, 2006). It starts with the definition of simplicial homology and cohomology, with many examples and applications. Then the Kolmogorov-Alexander multiplication in cohomology is introduced. A significant part of the book is devoted to applications of simplicial homology and cohomology to obstruction theory, in particular, to characteristic classes of vector bundles. The later chapters are concerned with singular homology and cohomology, and Cech and de Rham cohomology. The book ends with various applications of homology to the topology of manifolds, some of which might be of interest to experts in the area. The book contains many problems; almost all of them are provided with hints or complete solutions.

Homology Theory

An Introduction to Algebraic Topology

Author: James W. Vick

Publisher: Springer Science & Business Media

ISBN: 9780387941264

Category: Mathematics

Page: 242

View: 3452

This book is designed to be an introduction to some of the basic ideas in the field of algebraic topology. In particular, it is devoted to the foundations and applications of homology theory. The only prerequisite for the student is a basic knowledge of abelian groups and point set topology. The essentials of singular homology are given in the first chapter, along with some of the most important applications. In this way the student can quickly see the importance of the material. The successive topics include attaching spaces, finite CW complexes, the Eilenberg-Steenrod axioms, cohomology products, manifolds, Poincare duality, and fixed point theory. Throughout the book, the approach is as illustrative as possible, with numerous examples and diagrams. Extremes of generality are sacrificed when they are likely to obscure the essential concepts involved. The book is intended to be easily read by students as a textbook for a course or as a source for individual study. This second edition has been expanded to include a new chapter on covering spaces, as well as additional illuminating exercises. The conceptual approach is again used to show how lifting problems give rise to the fundamental group and its properties.

Differential Topology

Author: Morris W. Hirsch

Publisher: Springer Science & Business Media

ISBN: 146849449X

Category: Mathematics

Page: 222

View: 8584

"A very valuable book. In little over 200 pages, it presents a well-organized and surprisingly comprehensive treatment of most of the basic material in differential topology, as far as is accessible without the methods of algebraic topology....There is an abundance of exercises, which supply many beautiful examples and much interesting additional information, and help the reader to become thoroughly familiar with the material of the main text." —MATHEMATICAL REVIEWS

Geometric Topology in Dimensions 2 and 3

Author: E.E. Moise

Publisher: Springer Science & Business Media

ISBN: 1461299063

Category: Mathematics

Page: 262

View: 797

Geometric topology may roughly be described as the branch of the topology of manifolds which deals with questions of the existence of homeomorphisms. Only in fairly recent years has this sort of topology achieved a sufficiently high development to be given a name, but its beginnings are easy to identify. The first classic result was the SchOnflies theorem (1910), which asserts that every 1-sphere in the plane is the boundary of a 2-cell. In the next few decades, the most notable affirmative results were the "Schonflies theorem" for polyhedral 2-spheres in space, proved by J. W. Alexander [Ad, and the triangulation theorem for 2-manifolds, proved by T. Rad6 [Rd. But the most striking results of the 1920s were negative. In 1921 Louis Antoine [A ] published an extraordinary paper in which he 4 showed that a variety of plausible conjectures in the topology of 3-space were false. Thus, a (topological) Cantor set in 3-space need not have a simply connected complement; therefore a Cantor set can be imbedded in 3-space in at least two essentially different ways; a topological 2-sphere in 3-space need not be the boundary of a 3-cell; given two disjoint 2-spheres in 3-space, there is not necessarily any third 2-sphere which separates them from one another in 3-space; and so on and on. The well-known "horned sphere" of Alexander [A ] appeared soon thereafter.

Women in Topology: Collaborations in Homotopy Theory

Author: Maria Basterra,Kristine Bauer,Kathryn Hess,Brenda Johnson

Publisher: American Mathematical Soc.

ISBN: 1470410133

Category: Algebraic topology -- Applied homological algebra and category theory -- Abstract and axiomatic homotopy theory

Page: 166

View: 8784

This volume contains the proceedings of the WIT: Women in Topology workshop, held from August 18-23, 2013, at the Banff International Research Station, Banff, Alberta, Canada. The Women in Topology workshop was devoted primarily to active collaboration by teams of five to seven participants, each including senior and junior researchers, as well as graduate students. This volume contains papers based on the results obtained by team projects in homotopy theory, including -infinity structures, equivariant homotopy theory, functor calculus, model categories, orbispaces, and topological Hochschild homology.

Differential Forms in Algebraic Topology

Author: Raoul Bott,Loring W. Tu

Publisher: Springer Science & Business Media

ISBN: 1475739516

Category: Mathematics

Page: 338

View: 430

Developed from a first-year graduate course in algebraic topology, this text is an informal introduction to some of the main ideas of contemporary homotopy and cohomology theory. The materials are structured around four core areas: de Rham theory, the Cech-de Rham complex, spectral sequences, and characteristic classes. By using the de Rham theory of differential forms as a prototype of cohomology, the machineries of algebraic topology are made easier to assimilate. With its stress on concreteness, motivation, and readability, this book is equally suitable for self-study and as a one-semester course in topology.

Introduction to Homotopy Theory

Author: Martin Arkowitz

Publisher: Springer Science & Business Media

ISBN: 9781441973290

Category: Mathematics

Page: 344

View: 9316

This is a book in pure mathematics dealing with homotopy theory, one of the main branches of algebraic topology. The principal topics are as follows: Basic Homotopy; H-spaces and co-H-spaces; fibrations and cofibrations; exact sequences of homotopy sets, actions, and coactions; homotopy pushouts and pullbacks; classical theorems, including those of Serre, Hurewicz, Blakers-Massey, and Whitehead; homotopy Sets; homotopy and homology decompositions of spaces and maps; and obstruction theory. The underlying theme of the entire book is the Eckmann-Hilton duality theory. The book can be used as a text for the second semester of an advanced ungraduate or graduate algebraic topology course.

Rational Homotopy Theory

Author: Yves Felix,Stephen Halperin,J.-C. Thomas

Publisher: Springer Science & Business Media

ISBN: 146130105X

Category: Mathematics

Page: 539

View: 5512

Rational homotopy theory is a subfield of algebraic topology. Written by three authorities in the field, this book contains all the main theorems of the field with complete proofs. As both notation and techniques of rational homotopy theory have been considerably simplified, the book presents modern elementary proofs for many results that were proven ten or fifteen years ago.

Algebraic Topology

Author: Tammo tom Dieck

Publisher: European Mathematical Society

ISBN: 9783037190487

Category: Mathematics

Page: 567

View: 9541

This book is written as a textbook on algebraic topology. Prerequisites are standard point set topology (as recalled in the first chapter), elementary algebraic notions (modules, tensor product), and some terminology from category theory. The aim of the book is to introduce advanced undergraduate and graduate (masters) students to basic tools, concepts and results of algebraic topology. Sufficient background material from geometry and algebra is included.

Advances in Homotopy Theory

Papers in Honour of I M James, Cortona 1988

Author: S. Salamon,B. Steer

Publisher: Cambridge University Press

ISBN: 9780521379076

Category: Mathematics

Page: 177

View: 6369

This is a collection of the recorded lectures given at a conference to celebrate the 60th birthday of Professor Ioan James, who has made significant contributions to homotopy theory, highlighting problems and initiating new methods. The present volume contains papers from internationally distinguished research workers that reflect recent exciting breakthroughs in this field. It will be important for all homotopy theorists as both a statement of current research and as a signpost for new directions. This should prove interesting to research workers in algebraic topology.

Introduction to Modern Number Theory

Fundamental Problems, Ideas and Theories

Author: Yu. I. Manin,Alexei A. Panchishkin

Publisher: Springer Science & Business Media

ISBN: 9783540276920

Category: Mathematics

Page: 514

View: 3339

This edition has been called ‘startlingly up-to-date’, and in this corrected second printing you can be sure that it’s even more contemporaneous. It surveys from a unified point of view both the modern state and the trends of continuing development in various branches of number theory. Illuminated by elementary problems, the central ideas of modern theories are laid bare. Some topics covered include non-Abelian generalizations of class field theory, recursive computability and Diophantine equations, zeta- and L-functions. This substantially revised and expanded new edition contains several new sections, such as Wiles' proof of Fermat's Last Theorem, and relevant techniques coming from a synthesis of various theories.