Elements of Homotopy Theory

Author: George W. Whitehead

Publisher: Springer Science & Business Media

ISBN: 1461263182

Category: Mathematics

Page: 746

View: 9329

As the title suggests, this book is concerned with the elementary portion of the subject of homotopy theory. It is assumed that the reader is familiar with the fundamental group and with singular homology theory, including the Universal Coefficient and Kiinneth Theorems. Some acquaintance with manifolds and Poincare duality is desirable, but not essential. Anyone who has taught a course in algebraic topology is familiar with the fact that a formidable amount of technical machinery must be introduced and mastered before the simplest applications can be made. This phenomenon is also observable in the more advanced parts of the subject. I have attempted to short-circuit it by making maximal use of elementary methods. This approach entails a leisurely exposition in which brevity and perhaps elegance are sacrificed in favor of concreteness and ease of application. It is my hope that this approach will make homotopy theory accessible to workers in a wide range of other subjects-subjects in which its impact is beginning to be felt. It is a consequence of this approach that the order of development is to a certain extent historical. Indeed, if the order in which the results presented here does not strictly correspond to that in which they were discovered, it nevertheless does correspond to an order in which they might have been discovered had those of us who were working in the area been a little more perspicacious.

Nilpotente Gruppen und nilpotente Räume

Nachdiplomvorlesung gehalten am Mathematik-Departement ETH Zürich 1981/82

Author: P.J. Hilton

Publisher: Springer-Verlag

ISBN: 3540387919

Category: Mathematics

Page: 221

View: 5430

Rational Homotopy Theory

Author: Yves Felix,Stephen Halperin,J.-C. Thomas

Publisher: Springer Science & Business Media

ISBN: 146130105X

Category: Mathematics

Page: 539

View: 9177

Rational homotopy theory is a subfield of algebraic topology. Written by three authorities in the field, this book contains all the main theorems of the field with complete proofs. As both notation and techniques of rational homotopy theory have been considerably simplified, the book presents modern elementary proofs for many results that were proven ten or fifteen years ago.

Introduction to Homotopy Theory

Author: Martin Arkowitz

Publisher: Springer Science & Business Media

ISBN: 9781441973290

Category: Mathematics

Page: 344

View: 6877

This is a book in pure mathematics dealing with homotopy theory, one of the main branches of algebraic topology. The principal topics are as follows: Basic Homotopy; H-spaces and co-H-spaces; fibrations and cofibrations; exact sequences of homotopy sets, actions, and coactions; homotopy pushouts and pullbacks; classical theorems, including those of Serre, Hurewicz, Blakers-Massey, and Whitehead; homotopy Sets; homotopy and homology decompositions of spaces and maps; and obstruction theory. The underlying theme of the entire book is the Eckmann-Hilton duality theory. The book can be used as a text for the second semester of an advanced ungraduate or graduate algebraic topology course.


Introductory Lectures on Braids, Configurations and Their Applications

Author: A. Jon Berrick

Publisher: World Scientific

ISBN: 9814291412

Category: Mathematics

Page: 403

View: 6723

This book is an indispensable guide for anyone seeking to familarize themselves with research in braid groups, configuration spaces and their applications. Starting at the beginning, and assuming only basic topology and group theory, the volume''s noted expositors take the reader through the fundamental theory and on to current research and applications in fields as varied as astrophysics, cryptography and robotics. As leading researchers themselves, the authors write enthusiastically about their topics, and include many striking illustrations. The chapters have their origins in tutorials given at a Summer School on Braids, at the National University of Singapore''s Institute for Mathematical Sciences in June 2007, to an audience of more than thirty international graduate students. Sample Chapter(s). Foreword (31 KB). Chapter 1: Tutorial on the Braid Groups (372 KB). Contents: Tutorial on the Braid Groups (D Rolfsen); Simplicial Objects and Homotopy Groups (J Wu); Introduction to Configuration Spaces and Their Applications (F R Cohen); Configuration Spaces, Braids, and Robotics (R Ghrist); Braids and Magnetic Fields (M A Berger); Braid Group Cryptography (D Garber). Readership: Graduates and researchers in mathematics (low-dimensional topology, homotopy theory), applied mathematics (robotics and swarming, cryptography) and applications to magnetohydrodynamics and fluid flow.

Maß und Kategorie

Author: J.C. Oxtoby

Publisher: Springer-Verlag

ISBN: 364296074X

Category: Mathematics

Page: 112

View: 4197

Dieses Buch behandelt hauptsächlich zwei Themenkreise: Der Bairesche Kategorie-Satz als Hilfsmittel für Existenzbeweise sowie Die "Dualität" zwischen Maß und Kategorie. Die Kategorie-Methode wird durch viele typische Anwendungen erläutert; die Analogie, die zwischen Maß und Kategorie besteht, wird nach den verschiedensten Richtungen hin genauer untersucht. Hierzu findet der Leser eine kurze Einführung in die Grundlagen der metrischen Topologie; außerdem werden grundlegende Eigenschaften des Lebesgue schen Maßes hergeleitet. Es zeigt sich, daß die Lebesguesche Integrationstheorie für unsere Zwecke nicht erforderlich ist, sondern daß das Riemannsche Integral ausreicht. Weiter werden einige Begriffe aus der allgemeinen Maßtheorie und Topologie eingeführt; dies geschieht jedoch nicht nur der größeren Allgemeinheit wegen. Es erübrigt sich fast zu erwähnen, daß sich die Bezeichnung "Kategorie" stets auf "Bairesche Kategorie" be zieht; sie hat nichts zu tun mit dem in der homologischen Algebra verwendeten Begriff der Kategorie. Beim Leser werden lediglich grundlegende Kenntnisse aus der Analysis und eine gewisse Vertrautheit mit der Mengenlehre vorausgesetzt. Für die hier untersuchten Probleme bietet sich in natürlicher Weise die mengentheoretische Formulierung an. Das vorlie gende Buch ist als Einführung in dieses Gebiet der Analysis gedacht. Man könnte es als Ergänzung zur üblichen Grundvorlesung über reelle Analysis, als Grundlage für ein Se minar oder auch zum selbständigen Studium verwenden. Bei diesem Buch handelt es sich vorwiegend um eine zusammenfassende Darstellung; jedoch finden sich in ihm auch einige Verfeinerungen bekannter Resultate, namentlich Satz 15.6 und Aussage 20.4. Das Literaturverzeichnis erhebt keinen Anspruch auf Vollständigkeit. Häufig werden Werke zitiert, die weitere Literaturangaben enthalten.

Minimal Resolutions Via Algebraic Discrete Morse Theory

Author: Michael Jöllenbeck,Volkmar Welker

Publisher: American Mathematical Soc.

ISBN: 0821842579

Category: Mathematics

Page: 74

View: 7973

Forman's discrete Morse theory is studied from an algebraic viewpoint. Analogous to independent work of Emil Skoldberg, the authors show that this theory can be aplied to chain complexes of free modules over a ring and provide four applications of this theory.


Author: Alʹbert Nikolaevich Shiri︠a︡ev,Hans Jürgen Engelbert

Publisher: N.A


Category: Probabilities

Page: 592

View: 4995

Elements of Homology Theory

Author: Viktor Vasilʹevich Prasolov

Publisher: American Mathematical Soc.

ISBN: 0821838121

Category: Mathematics

Page: 418

View: 2103

The book is a continuation of the previous book by the author (Elements of Combinatorial and Differential Topology, Graduate Studies in Mathematics, Volume 74, American Mathematical Society, 2006). It starts with the definition of simplicial homology and cohomology, with many examples and applications. Then the Kolmogorov-Alexander multiplication in cohomology is introduced. A significant part of the book is devoted to applications of simplicial homology and cohomology to obstruction theory, in particular, to characteristic classes of vector bundles. The later chapters are concerned with singular homology and cohomology, and Cech and de Rham cohomology. The book ends with various applications of homology to the topology of manifolds, some of which might be of interest to experts in the area. The book contains many problems; almost all of them are provided with hints or complete solutions.

Documenta Mathematica

Journal Der Deutschen Mathematiker-Vereinigung

Author: N.A

Publisher: N.A


Category: Mathematics

Page: N.A

View: 4178

Introduction to Homotopy Theory

Author: Paul Selick

Publisher: American Mathematical Soc.

ISBN: 9780821844366

Category: Mathematics

Page: 188

View: 7309

This text is based on a one-semester graduate course taught by the author at The Fields Institute in fall 1995 as part of the homotopy theory program which constituted the Institute's major program that year. The intent of the course was to bring graduate students who had completed a first course in algebraic topology to the point where they could understand research lectures in homotopy theory and to prepare them for the other, more specialized graduate courses being held in conjunction with the program. The notes are divided into two parts: prerequisites and the course proper. Part I, the prerequisites, contains a review of material often taught in a first course in algebraic topology. It should provide a useful summary for students and non-specialists who are interested in learning the basics of algebraic topology. Included are some basic category theory, point set topology, the fundamental group, homological algebra, singular and cellular homology, and Poincare duality. Part II covers fibrations and cofibrations, Hurewicz and cellular approximation theorems, topics in classical homotopy theory, simplicial sets, fiber bundles, Hopf algebras, spectral sequences, localization, generalized homology and cohomology operations. This book collects in one place the material that a researcher in algebraic topology must know. The author has attempted to make this text a self-contained exposition. Precise statements and proofs are given of ``folk'' theorems which are difficult to find or do not exist in the literature.


Differentialformen in Analysis, Geometrie und Physik

Author: Ilka Agricola,Thomas Friedrich

Publisher: Springer-Verlag

ISBN: 3834896721

Category: Mathematics

Page: 313

View: 9486

Dieses Lehrbuch eignet sich als Fortsetzungskurs in Analysis nach den Grundvorlesungen im ersten Studienjahr. Die Vektoranalysis ist ein klassisches Teilgebiet der Mathematik mit vielfältigen Anwendungen, zum Beispiel in der Physik. Das Buch führt die Studierenden in die Welt der Differentialformen und Analysis auf Untermannigfaltigkeiten des Rn ein. Teile des Buches können auch sehr gut für Vorlesungen in Differentialgeometrie oder Mathematischer Physik verwendet werden. Der Text enthält viele ausführliche Beispiele mit vollständigem Lösungsweg, die zur Übung hilfreich sind. Zahlreiche Abbildungen veranschaulichen den Text. Am Ende jedes Kapitels befinden sich weitere Übungsaufgaben. In der ersten Auflage erschien das Buch unter dem Titel "Globale Analysis". Der Text wurde an vielen Stellen überarbeitet. Fast alle Bilder wurden neu erstellt. Inhaltliche Ergänzungen wurden u. a. in der Differentialgeometrie sowie der Elektrodynamik vorgenommen.

Homotopical Topology

Author: Anatoly Fomenko,Dmitry Fuchs

Publisher: Springer

ISBN: 3319234889

Category: Mathematics

Page: 627

View: 888

This textbook on algebraic topology updates a popular textbook from the golden era of the Moscow school of I. M. Gelfand. The first English translation, done many decades ago, remains very much in demand, although it has been long out-of-print and is difficult to obtain. Therefore, this updated English edition will be much welcomed by the mathematical community. Distinctive features of this book include: a concise but fully rigorous presentation, supplemented by a plethora of illustrations of a high technical and artistic caliber; a huge number of nontrivial examples and computations done in detail; a deeper and broader treatment of topics in comparison to most beginning books on algebraic topology; an extensive, and very concrete, treatment of the machinery of spectral sequences. The second edition contains an entirely new chapter on K-theory and the Riemann-Roch theorem (after Hirzebruch and Grothendieck).