Exercises in Computational Mathematics with MATLAB

Author: Tom Lyche,Jean-Louis Merrien

Publisher: Springer

ISBN: 366243511X

Category: Mathematics

Page: 372

View: 3306

Designed to provide tools for independent study, this book contains student-tested mathematical exercises joined with MATLAB programming exercises. Most chapters open with a review followed by theoretical and programming exercises, with detailed solutions provided for all problems including programs. Many of the MATLAB exercises are presented as Russian dolls: each question improves and completes the previous program and results are provided to validate the intermediate programs. The book offers useful MATLAB commands, advice on tables, vectors, matrices and basic commands for plotting. It contains material on eigenvalues and eigenvectors and important norms of vectors and matrices including perturbation theory; iterative methods for solving nonlinear and linear equations; polynomial and piecewise polynomial interpolation; Bézier curves; approximations of functions and integrals and more. The last two chapters considers ordinary differential equations including two point boundary value problems, and deal with finite difference methods for some partial differential equations. The format is designed to assist students working alone, with concise Review paragraphs, Math Hint footnotes on the mathematical aspects of a problem and MATLAB Hint footnotes with tips on programming.

Wissenschaftliches Rechnen mit MATLAB

Author: Alfio Quarteroni,Fausto Saleri

Publisher: Springer-Verlag

ISBN: 3540293078

Category: Mathematics

Page: 269

View: 9448

Aus den Rezensionen der englischen Auflage: Dieses Lehrbuch ist eine Einführung in das Wissenschaftliche Rechnen und diskutiert Algorithmen und deren mathematischen Hintergrund. Angesprochen werden im Detail nichtlineare Gleichungen, Approximationsverfahren, numerische Integration und Differentiation, numerische Lineare Algebra, gewöhnliche Differentialgleichungen und Randwertprobleme. Zu den einzelnen Themen werden viele Beispiele und Übungsaufgaben sowie deren Lösung präsentiert, die durchweg in MATLAB formuliert sind. Der Leser findet daher nicht nur die graue Theorie sondern auch deren Umsetzung in numerischen, in MATLAB formulierten Code. MATLAB select 2003, Issue 2, p. 50. [Die Autoren] haben ein ausgezeichnetes Werk vorgelegt, das MATLAB vorstellt und eine sehr nützliche Sammlung von MATLAB Funktionen für die Lösung fortgeschrittener mathematischer und naturwissenschaftlicher Probleme bietet. [...] Die Präsentation des Stoffs ist durchgängig gut und leicht verständlich und beinhaltet Lösungen für die Übungen am Ende jedes Kapitels. Als exzellenter Neuzugang für Universitätsbibliotheken- und Buchhandlungen wird dieses Buch sowohl beim Selbststudium als auch als Ergänzung zu anderen MATLAB-basierten Büchern von großem Nutzen sein. Alles in allem: Sehr empfehlenswert. Für Studenten im Erstsemester wie für Experten gleichermassen. S.T. Karris, University of California, Berkeley, Choice 2003.

Angewandte Mathematik: Body and Soul

Band 2: Integrale und Geometrie in IRn

Author: Kenneth Eriksson,Donald Estep,Claes Johnson

Publisher: Springer-Verlag

ISBN: 3540269509

Category: Mathematics

Page: 362

View: 4080

"Angewandte Mathematik: Body & Soul" ist ein neuer Grundkurs in der Mathematikausbildung für Studienanfänger in den Naturwissenschaften, der Technik, und der Mathematik, der an der Chalmers Tekniska Högskola in Göteborg entwickelt wurde. Er besteht aus drei Bänden sowie Computer-Software. Das Projekt ist begründet in der Computerrevolution, die ihrerseits völlig neue Möglichkeiten des wissenschaftlichen Rechnens in der Mathematik, den Naturwissenschaften und im Ingenieurwesen eröffnet hat. Es besteht aus einer Synthese der mathematischen Analysis (Soul) mit der numerischen Berechnung (Body) sowie den Anwendungen. Die Bände I-III geben eine moderne Version der Analysis und der linearen Algebra wieder, einschließlich konstruktiver numerischer Techniken und Anwendungen, zugeschnitten auf Anfängerprogramme im Maschinenbau und den Naturwissenschaften. Weitere Bände behandeln Themen wie z.B. dynamische Systeme, Strömungsdynamik, Festkörpermechanik und Elektromagnetismus. Dieser Band entwickelt das Riemann-Integral, um eine Funktion zu einer gegebenen Ableitung zu bestimmen. Darauf aufbauend werden Differentialgleichungen und Anfangswertprobleme mit einer Vielzahl anschaulicher Anwendungen behandelt. Die lineare Algebra wird auf n-dimensionale Räume verallgemeinert, wobei wiederum dem praktischen Umgang und numerischen Lösungstechniken besonderer Platz eingeräumt wird. Die Autoren sind führende Experten im Gebiet des wissenschaftlichen Rechnens und haben schon mehrere erfolgreiche Bücher geschrieben. "[......] Oh, by the way, I suggest immediate purchase of all three volumes!" The Mathematical Association of America Online, 7.7.04

Methods of Applied Mathematics with a Software Overview

Author: Jon H. Davis

Publisher: Birkhäuser

ISBN: 3319433709

Category: Mathematics

Page: 781

View: 3131

Broadly organized around the applications of Fourier analysis, "Methods of Applied Mathematics with a MATLAB Overview" covers both classical applications in partial differential equations and boundary value problems, as well as the concepts and methods associated to the Laplace, Fourier, and discrete transforms. Transform inversion problems are also examined, along with the necessary background in complex variables. A final chapter treats wavelets, short-time Fourier analysis, and geometrically-based transforms. The computer program MATLAB is emphasized throughout, and an introduction to MATLAB is provided in an appendix. Rich in examples, illustrations, and exercises of varying difficulty, this text can be used for a one- or two-semester course and is ideal for students in pure and applied mathematics, physics, and engineering.

Mathematics for Neuroscientists

Author: Fabrizio Gabbiani,Steven James Cox

Publisher: Academic Press

ISBN: 0128019069

Category: Science

Page: 628

View: 1943

Mathematics for Neuroscientists, Second Edition, presents a comprehensive introduction to mathematical and computational methods used in neuroscience to describe and model neural components of the brain from ion channels to single neurons, neural networks and their relation to behavior. The book contains more than 200 figures generated using Matlab code available to the student and scholar. Mathematical concepts are introduced hand in hand with neuroscience, emphasizing the connection between experimental results and theory. Fully revised material and corrected text Additional chapters on extracellular potentials, motion detection and neurovascular coupling Revised selection of exercises with solutions More than 200 Matlab scripts reproducing the figures as well as a selection of equivalent Python scripts

Fundamentals of Numerical Computation

Author: Tobin A. Driscoll,Richard J. Braun

Publisher: SIAM

ISBN: 1611975077

Category: Science

Page: 553

View: 1189

Fundamentals of Numerical Computation is an advanced undergraduate-level introduction to the mathematics and use of algorithms for the fundamental problems of numerical computation: linear algebra, finding roots, approximating data and functions, and solving differential equations. The book is organized with simpler methods in the first half and more advanced methods in the second half, allowing use for either a single course or a sequence of two courses. The authors take readers from basic to advanced methods, illustrating them with over 200 self-contained MATLAB functions and examples designed for those with no prior MATLAB experience. Although the text provides many examples, exercises, and illustrations, the aim of the authors is not to provide a cookbook per se, but rather an exploration of the principles of cooking. The authors have developed an online resource that includes well-tested materials related to every chapter. Among these materials are lecture-related slides and videos, ideas for student projects, laboratory exercises, computational examples and scripts, and all the functions presented in the book. The book is intended for advanced undergraduates in math, applied math, engineering, or science disciplines, as well as for researchers and professionals looking for an introduction to a subject they missed or overlooked in their education.

A First Course in Applied Mathematics

Author: Jorge Rebaza

Publisher: John Wiley & Sons

ISBN: 1118229622

Category: Mathematics

Page: 439

View: 3438

Explore real–world applications of selected mathematical theory, concepts, and methods Exploring related methods that can be utilized in various fields of practice from science and engineering to business, A First Course in Applied Mathematics details how applied mathematics involves predictions, interpretations, analysis, and mathematical modeling to solve real–world problems. Written at a level that is accessible to readers from a wide range of scientific and engineering fields, the book masterfully blends standard topics with modern areas of application and provides the needed foundation for transitioning to more advanced subjects. The author utilizes MATLAB® to showcase the presented theory and illustrate interesting real–world applications to Google′s web page ranking algorithm, image compression, cryptography, chaos, and waste management systems. Additional topics covered include: Linear algebra Ranking web pages Matrix factorizations Least squares Image compression Ordinary differential equations Dynamical systems Mathematical models Throughout the book, theoretical and applications–oriented problems and exercises allow readers to test their comprehension of the presented material. An accompanying website features related MATLAB® code and additional resources. A First Course in Applied Mathematics is an ideal book for mathematics, computer science, and engineering courses at the upper–undergraduate level. The book also serves as a valuable reference for practitioners working with mathematical modeling, computational methods, and the applications of mathematics in their everyday work.

Elementary Mathematical and Computational Tools for Electrical and Computer Engineers Using MATLAB

Author: Jamal T. Manassah

Publisher: CRC Press

ISBN: 1466588241

Category: Technology & Engineering

Page: 368

View: 2486

Engineers around the world depend on MATLAB for its power, usability, and outstanding graphics capabilities. Yet too often, engineering students are either left on their own to acquire the background they need to use MATLAB, or they must learn the program concurrently within an advanced course. Both of these options delay students from solving realistic design problems, especially when they do not have a text focused on applications relevant to their field and written at the appropriate level of mathematics. Ideal for use as a short-course textbook and for self-study Elementary Mathematical and Computational Tools for Electrical and Computer Engineers Using MATLAB fills that gap. Accessible after just one semester of calculus, it introduces the many practical analytical and numerical tools that are essential to success both in future studies and in professional life. Sharply focused on the needs of the electrical and computer engineering communities, the text provides a wealth of relevant exercises and design problems. Changes in MATLAB's version 6.0 are included in a special addendum. The lack of skills in fundamental quantitative tools can seriously impede progress in one's engineering studies or career. By working through this text, either in a lecture/lab environment or by themselves, readers will not only begin mastering MATLAB, but they will also hone their analytical and computational skills to a level that will help them to enjoy and succeed in subsequent electrical and computer engineering pursuits.

Computational Mathematics

Models, Methods, and Analysis with MATLAB and MPI

Author: Robert E. White

Publisher: CRC Press

ISBN: 1135440328

Category: Mathematics

Page: 408

View: 6755

Computational Mathematics: Models, Methods, and Analysis with MATLAB and MPI explores and illustrates this process. Each section of the first six chapters is motivated by a specific application. The author applies a model, selects a numerical method, implements computer simulations, and assesses the ensuing results. These chapters include an abundance of MATLAB code. By studying the code instead of using it as a "black box, " you take the first step toward more sophisticated numerical modeling. The last four chapters focus on multiprocessing algorithms implemented using message passing interface (MPI). These chapters include Fortran 9x codes that illustrate the basic MPI subroutines and revisit the applications of the previous chapters from a parallel implementation perspective. All of the codes are available for download from www4.ncsu.edu./~white. This book is not just about math, not just about computing, and not just about applications, but about all three--in other words, computational science. Whether used as an undergraduate textbook, for self-study, or for reference, it builds the foundation you need to make numerical modeling and simulation integral parts of your investigational toolbox.

Numerical Linear Algebra with Applications

Using MATLAB

Author: William Ford

Publisher: Academic Press

ISBN: 0123947847

Category: Mathematics

Page: 628

View: 7652

Numerical Linear Algebra with Applications is designed for those who want to gain a practical knowledge of modern computational techniques for the numerical solution of linear algebra problems, using MATLAB as the vehicle for computation. The book contains all the material necessary for a first year graduate or advanced undergraduate course on numerical linear algebra with numerous applications to engineering and science. With a unified presentation of computation, basic algorithm analysis, and numerical methods to compute solutions, this book is ideal for solving real-world problems. The text consists of six introductory chapters that thoroughly provide the required background for those who have not taken a course in applied or theoretical linear algebra. It explains in great detail the algorithms necessary for the accurate computation of the solution to the most frequently occurring problems in numerical linear algebra. In addition to examples from engineering and science applications, proofs of required results are provided without leaving out critical details. The Preface suggests ways in which the book can be used with or without an intensive study of proofs. This book will be a useful reference for graduate or advanced undergraduate students in engineering, science, and mathematics. It will also appeal to professionals in engineering and science, such as practicing engineers who want to see how numerical linear algebra problems can be solved using a programming language such as MATLAB, MAPLE, or Mathematica. Six introductory chapters that thoroughly provide the required background for those who have not taken a course in applied or theoretical linear algebra Detailed explanations and examples A through discussion of the algorithms necessary for the accurate computation of the solution to the most frequently occurring problems in numerical linear algebra Examples from engineering and science applications

Finite-Elemente-Methoden

Author: Klaus-Jürgen Bathe

Publisher: DrMaster Publications

ISBN: 9783540668060

Category: Technology & Engineering

Page: 1253

View: 6896

Dieses Lehr- und Handbuch behandelt sowohl die elementaren Konzepte als auch die fortgeschrittenen und zukunftsweisenden linearen und nichtlinearen FE-Methoden in Statik, Dynamik, Festkörper- und Fluidmechanik. Es wird sowohl der physikalische als auch der mathematische Hintergrund der Prozeduren ausführlich und verständlich beschrieben. Das Werk enthält eine Vielzahl von ausgearbeiteten Beispielen, Rechnerübungen und Programmlisten. Als Übersetzung eines erfolgreichen amerikanischen Lehrbuchs hat es sich in zwei Auflagen auch bei den deutschsprachigen Ingenieuren etabliert. Die umfangreichen Änderungen gegenüber der Vorauflage innerhalb aller Kapitel - vor allem aber der fortgeschrittenen - spiegeln die rasche Entwicklung innerhalb des letzten Jahrzehnts auf diesem Gebiet wieder. TOC:Eine Einführung in den Gebrauch von Finite-Elemente-Verfahren.-Vektoren, Matrizen und Tensoren.-Einige Grundbegriffe ingenieurwissenschaftlicher Berechnungen.-Formulierung der Methode der finiten Elemente.-Formulierung und Berechnung von isoparametrischen Finite-Elemente-Matrizen.-Nichtlineare Finite-Elemente-Berechnungen in der Festkörper- und Strukturmechanik.-Finite-Elemente-Berechnungen von Wärmeübertragungs- und Feldproblemen.-Lösung von Gleichgewichtsbeziehungen in statischen Berechnungen.-Lösung von Bewegungsgleichungen in kinetischen Berechnungen.-Vorbemerkungen zur Lösung von Eigenproblemen.-Lösungsverfahren für Eigenprobleme.-Implementierung der Finite-Elemente-Methode.

Matlab für Dummies

Author: Jim Sizemore

Publisher: John Wiley & Sons

ISBN: 352780871X

Category: Computers

Page: 416

View: 5598

Ob Naturwissenschaftler, Mathematiker, Ingenieur oder Datenwissenschaftler - mit MATLAB haben Sie ein mächtiges Tool in der Hand, das Ihnen die Arbeit mit Ihren Daten erleichtert. Aber wie das mit manch mächtigen Dingen so ist - es ist auch ganz schön kompliziert. Aber keine Sorge! Jim Sizemore führt Sie in diesem Buch Schritt für Schritt an das Programm heran - von der Installation und den ersten Skripten bis hin zu aufwändigen Berechnungen, der Erstellung von Grafiken und effizienter Fehlerbehebung. Sie werden begeistert sein, was Sie mit MATLAB alles anstellen können.

Foundations of Mathematical and Computational Economics

Author: Kamran Dadkhah

Publisher: Springer Science & Business Media

ISBN: 9783642137488

Category: Business & Economics

Page: 542

View: 6347

This is a book on the basics of mathematics and computation and their uses in economics for modern day students and practitioners. The reader is introduced to the basics of numerical analysis as well as the use of computer programs such as Matlab and Excel in carrying out involved computations. Sections are devoted to the use of Maple in mathematical analysis. Examples drawn from recent contributions to economic theory and econometrics as well as a variety of end of chapter exercises help to illustrate and apply the presented concepts.

Numerical Linear Algebra

Author: Grégoire Allaire,Sidi Mahmoud Kaber

Publisher: Springer Science & Business Media

ISBN: 9780387689180

Category: Mathematics

Page: 271

View: 2191

This book distinguishes itself from the many other textbooks on the topic of linear algebra by including mathematical and computational chapters along with examples and exercises with Matlab. In recent years, the use of computers in many areas of engineering and science has made it essential for students to get training in numerical methods and computer programming. Here, the authors use both Matlab and SciLab software as well as covering core standard material. It is intended for libraries; scientists and researchers; pharmaceutical industry.

Introduction to Computation and Modeling for Differential Equations

Author: Lennart Edsberg

Publisher: John Wiley & Sons

ISBN: 1119018463

Category: Mathematics

Page: 288

View: 9335

Uses mathematical, numerical, and programming tools to solve differential equations for physical phenomena and engineering problems Introduction to Computation and Modeling for Differential Equations, Second Edition features the essential principles and applications of problem solving across disciplines such as engineering, physics, and chemistry. The Second Edition integrates the science of solving differential equations with mathematical, numerical, and programming tools, specifically with methods involving ordinary differential equations; numerical methods for initial value problems (IVPs); numerical methods for boundary value problems (BVPs); partial differential equations (PDEs); numerical methods for parabolic, elliptic, and hyperbolic PDEs; mathematical modeling with differential equations; numerical solutions; and finite difference and finite element methods. The author features a unique “Five-M” approach: Modeling, Mathematics, Methods, MATLAB®, and Multiphysics, which facilitates a thorough understanding of how models are created and preprocessed mathematically with scaling, classification, and approximation and also demonstrates how a problem is solved numerically using the appropriate mathematical methods. With numerous real-world examples to aid in the visualization of the solutions, Introduction to Computation and Modeling for Differential Equations, Second Edition includes: New sections on topics including variational formulation, the finite element method, examples of discretization, ansatz methods such as Galerkin’s method for BVPs, parabolic and elliptic PDEs, and finite volume methods Numerous practical examples with applications in mechanics, fluid dynamics, solid mechanics, chemical engineering, heat conduction, electromagnetic field theory, and control theory, some of which are solved with computer programs MATLAB and COMSOL Multiphysics® Additional exercises that introduce new methods, projects, and problems to further illustrate possible applications A related website with select solutions to the exercises, as well as the MATLAB data sets for ordinary differential equations (ODEs) and PDEs Introduction to Computation and Modeling for Differential Equations, Second Edition is a useful textbook for upper-undergraduate and graduate-level courses in scientific computing, differential equations, ordinary differential equations, partial differential equations, and numerical methods. The book is also an excellent self-study guide for mathematics, science, computer science, physics, and engineering students, as well as an excellent reference for practitioners and consultants who use differential equations and numerical methods in everyday situations.

Explorations of Mathematical Models in Biology with MATLAB

Author: Mazen Shahin

Publisher: John Wiley & Sons

ISBN: 1118548531

Category: Science

Page: 304

View: 9146

Explore and analyze the solutions of mathematical models from diverse disciplines As biology increasingly depends on data, algorithms, and models, it has become necessary to use a computing language, such as the user-friendly MATLAB, to focus more on building and analyzing models as opposed to configuring tedious calculations. Explorations of Mathematical Models in Biology with MATLAB provides an introduction to model creation using MATLAB, followed by the translation, analysis, interpretation, and observation of the models. With an integrated and interdisciplinary approach that embeds mathematical modeling into biological applications, the book illustrates numerous applications of mathematical techniques within biology, ecology, and environmental sciences. Featuring a quantitative, computational, and mathematical approach, the book includes: Examples of real-world applications, such as population dynamics, genetics, drug administration, interacting species, and the spread of contagious diseases, to showcase the relevancy and wide applicability of abstract mathematical techniques Discussion of various mathematical concepts, such as Markov chains, matrix algebra, eigenvalues, eigenvectors, first-order linear difference equations, and nonlinear first-order difference equations Coverage of difference equations to model a wide range of real-life discrete time situations in diverse areas as well as discussions on matrices to model linear problems Solutions to selected exercises and additional MATLAB codes Explorations of Mathematical Models in Biology with MATLAB is an ideal textbook for upper-undergraduate courses in mathematical models in biology, theoretical ecology, bioeconomics, forensic science, applied mathematics, and environmental science. The book is also an excellent reference for biologists, ecologists, mathematicians, biomathematicians, and environmental and resource economists.

A First Course in Computational Physics

Author: Paul L. DeVries,Javier E. Hasbun

Publisher: Jones & Bartlett Publishers

ISBN: 1449636195

Category: Technology & Engineering

Page: 433

View: 5057

Computers and computation are extremely important components of physics and should be integral parts of a physicist s education. Furthermore, computational physics is reshaping the way calculations are made in all areas of physics. Intended for the physics and engineering students who have completed the introductory physics course, A First Course in Computational Physics, Second Edition covers the different types of computational problems using MATLAB with exercises developed around problems of physical interest. Topics such as root finding, Newton-Cotes integration, and ordinary differential equations are included and presented in the context of physics problems. A few topics rarely seen at this level such as computerized tomography, are also included. Within each chapter, the student is led from relatively elementary problems and simple numerical approaches through derivations of more complex and sophisticated methods, often culminating in the solution to problems of significant difficulty. The goal is to demonstrate how numerical methods are used to solve the problems that physicists face. Read the review published in Computing in Science & Engineering magazine, March/April 2011 (Vol. 13, No. 2) (c) 2011 IEEE, Published by the IEEE Computer Society"

Orthogonal Polynomials in MATLAB

Exercises and Solutions

Author: Walter Gautschi

Publisher: SIAM

ISBN: 1611974291

Category: Science

Page: 335

View: 5098

Techniques for generating orthogonal polynomials numerically have appeared only recently, within the last 30 or so years. Orthogonal Polynomials in MATLAB: Exercises and Solutions describes these techniques and related applications, all supported by MATLAB programs, and presents them in a unique format of exercises and solutions designed by the author to stimulate participation. Important computational problems in the physical sciences are included as models for readers to solve their own problems.

Introduction to Numerical Analysis

Author: Arnold Neumaier

Publisher: Cambridge University Press

ISBN: 9780521336109

Category: Mathematics

Page: 356

View: 5530

This 2001 textbook provides an introduction to constructive methods that provide accurate approximations to the solution of numerical problems using MATLAB.

Data Assimilation

A Mathematical Introduction

Author: Kody Law,Andrew Stuart,Konstantinos Zygalakis

Publisher: Springer

ISBN: 3319203258

Category: Mathematics

Page: 242

View: 6234

This book provides a systematic treatment of the mathematical underpinnings of work in data assimilation, covering both theoretical and computational approaches. Specifically the authors develop a unified mathematical framework in which a Bayesian formulation of the problem provides the bedrock for the derivation, development and analysis of algorithms; the many examples used in the text, together with the algorithms which are introduced and discussed, are all illustrated by the MATLAB software detailed in the book and made freely available online. The book is organized into nine chapters: the first contains a brief introduction to the mathematical tools around which the material is organized; the next four are concerned with discrete time dynamical systems and discrete time data; the last four are concerned with continuous time dynamical systems and continuous time data and are organized analogously to the corresponding discrete time chapters. This book is aimed at mathematical researchers interested in a systematic development of this interdisciplinary field, and at researchers from the geosciences, and a variety of other scientific fields, who use tools from data assimilation to combine data with time-dependent models. The numerous examples and illustrations make understanding of the theoretical underpinnings of data assimilation accessible. Furthermore, the examples, exercises and MATLAB software, make the book suitable for students in applied mathematics, either through a lecture course, or through self-study.