Finite Element Procedures

Author: Klaus-Jürgen Bathe

Publisher: Klaus-Jurgen Bathe

ISBN: 9780979004902

Category: Engineering mathematics

Page: 1037

View: 9223

Finite Element Procedures for Contact-impact Problems

Author: Zhi-Hua Zhong

Publisher: Oxford University Press on Demand

ISBN: 9780198563839

Category: Law

Page: 371

View: 4538

The resolution of contact-impact problems, once computationally difficult, has been made easier and more accurate with the finite element method. This new book explains finite-element procedures for solving both static and dynamic contact-impact problems. It provides comprehensive discussions on the formulation, linearization, and discretization of such problems. Lagrangian formulation is introduced, and explicit and implicit solutions are presented. Friction phenomena and the behavior of shell structures upon impact are described. The book also includes numerical algorithms used to simulate industrial applications such as metal-forming processes and crashworthiness analysis of automobiles. Engineers, researchers, and students in solid and applied mechanics will require access to this valuable resource.

The Finite Element Analysis of Shells - Fundamentals

Author: Dominique Chapelle,Klaus-Jurgen Bathe

Publisher: Springer Science & Business Media

ISBN: 3662052296

Category: Technology & Engineering

Page: 330

View: 2792

The authors present a modern continuum mechanics and mathematical framework to study shell physical behaviors, and to formulate and evaluate finite element procedures. With a view towards the synergy that results from physical and mathematical understanding, the book focuses on the fundamentals of shell theories, their mathematical bases and finite element discretizations. The complexity of the physical behaviors of shells is analysed, and the difficulties to obtain uniformly optimal finite element procedures are identified and studied. Some modern finite element methods are presented for linear and nonlinear analyses. A state of the art monograph by leading experts.

A Unified Approach to the Finite Element Method and Error Analysis Procedures

Author: Julian A. T. Dow

Publisher: Elsevier

ISBN: 9780080543420

Category: Technology & Engineering

Page: 533

View: 1257

A Unified Approach to the Finite Element Method and Error Analysis Procedures provides an in-depth background to better understanding of finite element results and techniques for improving accuracy of finite element methods. Thus, the reader is able to identify and eliminate errors contained in finite element models. Three different error analysis techniques are systematically developed from a common theoretical foundation: 1) modeling erros in individual elements; 2) discretization errors in the overall model; 3) point-wise errors in the final stress or strain results. Thoroughly class tested with undergraduate and graduate students. A Unified Approach to the Finite Element Method and Error Analysis Procedures is sure to become an essential resource for students as well as practicing engineers and researchers. New, simpler element formulation techniques, model-independent results, and error measures New polynomial-based methods for identifying critical points New procedures for evaluating sheer/strain accuracy Accessible to undergraduates, insightful to researchers, and useful to practitioners Taylor series (polynomial) based Intuitive elemental and point-wise error measures Essential background information provided in 12 appendices

Finite Elements Analysis: Procedures in Engineering

Author: H. Lakshmininarayana

Publisher: Universities Press

ISBN: 9788173714764

Category:

Page: 263

View: 980

This textbook has emerged from three decades of experience gained by the author in education, research and practice. The basic concepts, mathematical models and computational algorithms supporting the Finite Element Method (FEM) are clearly and concisely developed.

The Finite Element Method: Its Basis and Fundamentals

Author: Olek C Zienkiewicz,Robert L Taylor,J.Z. Zhu

Publisher: Butterworth-Heinemann

ISBN: 008095135X

Category: Technology & Engineering

Page: 756

View: 7883

The Finite Element Method: Its Basis and Fundamentals offers a complete introduction to the basis of the finite element method, covering fundamental theory and worked examples in the detail required for readers to apply the knowledge to their own engineering problems and understand more advanced applications. This edition sees a significant rearrangement of the book’s content to enable clearer development of the finite element method, with major new chapters and sections added to cover: Weak forms Variational forms Multi-dimensional field problems Automatic mesh generation Plate bending and shells Developments in meshless techniques Focusing on the core knowledge, mathematical and analytical tools needed for successful application, The Finite Element Method: Its Basis and Fundamentals is the authoritative resource of choice for graduate level students, researchers and professional engineers involved in finite element-based engineering analysis. A proven keystone reference in the library of any engineer needing to understand and apply the finite element method in design and development. Founded by an influential pioneer in the field and updated in this seventh edition by an author team incorporating academic authority and industrial simulation experience. Features reworked and reordered contents for clearer development of the theory, plus new chapters and sections on mesh generation, plate bending, shells, weak forms and variational forms.

An Introduction to the Mathematical Theory of Finite Elements

Author: J. T. Oden,J. N. Reddy

Publisher: Courier Corporation

ISBN: 0486142213

Category: Technology & Engineering

Page: 448

View: 971

This introduction to the theory of Sobolev spaces and Hilbert space methods in partial differential equations is geared toward readers of modest mathematical backgrounds. It offers coherent, accessible demonstrations of the use of these techniques in developing the foundations of the theory of finite element approximations. J. T. Oden is Director of the Institute for Computational Engineering & Sciences (ICES) at the University of Texas at Austin, and J. N. Reddy is a Professor of Engineering at Texas A&M University. They developed this essentially self-contained text from their seminars and courses for students with diverse educational backgrounds. Their effective presentation begins with introductory accounts of the theory of distributions, Sobolev spaces, intermediate spaces and duality, the theory of elliptic equations, and variational boundary value problems. The second half of the text explores the theory of finite element interpolation, finite element methods for elliptic equations, and finite element methods for initial boundary value problems. Detailed proofs of the major theorems appear throughout the text, in addition to numerous examples.

Introduction to Nonlinear Finite Element Analysis

Author: Nam-Ho Kim

Publisher: Springer Science & Business Media

ISBN: 1441917462

Category: Technology & Engineering

Page: 430

View: 1782

This book introduces the key concepts of nonlinear finite element analysis procedures. The book explains the fundamental theories of the field and provides instructions on how to apply the concepts to solving practical engineering problems. Instead of covering many nonlinear problems, the book focuses on three representative problems: nonlinear elasticity, elastoplasticity, and contact problems. The book is written independent of any particular software, but tutorials and examples using four commercial programs are included as appendices: ANSYS, NASTRAN, ABAQUS, and MATLAB. In particular, the MATLAB program includes all source codes so that students can develop their own material models, or different algorithms. Please visit the author's website for supplemental material, including PowerPoint presentations and MATLAB codes, at http://www2.mae.ufl.edu/nkim/INFEM/

The Finite Element Method for Fluid Dynamics

Author: Olek C Zienkiewicz,Robert L Taylor,P. Nithiarasu

Publisher: Butterworth-Heinemann

ISBN: 0080951376

Category: Technology & Engineering

Page: 584

View: 1178

The Finite Element Method for Fluid Dynamics offers a complete introduction the application of the finite element method to fluid mechanics. The book begins with a useful summary of all relevant partial differential equations before moving on to discuss convection stabilization procedures, steady and transient state equations, and numerical solution of fluid dynamic equations. The character-based split (CBS) scheme is introduced and discussed in detail, followed by thorough coverage of incompressible and compressible fluid dynamics, flow through porous media, shallow water flow, and the numerical treatment of long and short waves. Updated throughout, this new edition includes new chapters on: Fluid-structure interaction, including discussion of one-dimensional and multidimensional problems. Biofluid dynamics, covering flow throughout the human arterial system. Focusing on the core knowledge, mathematical and analytical tools needed for successful computational fluid dynamics (CFD), The Finite Element Method for Fluid Dynamics is the authoritative introduction of choice for graduate level students, researchers and professional engineers. A proven keystone reference in the library of any engineer needing to understand and apply the finite element method to fluid mechanics. Founded by an influential pioneer in the field and updated in this seventh edition by leading academics who worked closely with Olgierd C. Zienkiewicz. Features new chapters on fluid-structure interaction and biofluid dynamics, including coverage of one-dimensional flow in flexible pipes and challenges in modeling systemic arterial circulation.

The Finite Element Method in Engineering

Author: Singiresu S. Rao

Publisher: Butterworth-Heinemann

ISBN: 0128143649

Category: Technology & Engineering

Page: 782

View: 8269

The Finite Element Method in Engineering, Sixth Edition, provides a thorough grounding in the mathematical principles behind the Finite Element Analysis technique—an analytical engineering tool originated in the 1960's by the aerospace and nuclear power industries to find usable, approximate solutions to problems with many complex variables. Rao shows how to set up finite element solutions in civil, mechanical and aerospace engineering applications. The new edition features updated real-world examples from MATLAB, Ansys and Abaqus, and a new chapter on additional FEM topics including extended FEM (X-FEM). Professional engineers will benefit from the introduction to the many useful applications of finite element analysis. Includes revised and updated chapters on MATLAB, Ansys and Abaqus Offers a new chapter, Additional Topics in Finite Element Method Includes discussion of practical considerations, errors and pitfalls in FEM singularity elements Features a brief presentation of recent developments in FEM including extended FEM (X-FEM), augmented FEM (A-FEM) and partition of unity FEM (POUFEM) Features improved pedagogy, including the addition of more design-oriented and practical examples and problems Covers real-life applications, sample review questions at the end of most chapters, and updated references

Engineering Computation of Structures: The Finite Element Method

Author: Maria Augusta Neto,Ana Amaro,Luis Roseiro,José Cirne,Rogério Leal

Publisher: Springer

ISBN: 3319177109

Category: Technology & Engineering

Page: 314

View: 9766

This book presents theories and the main useful techniques of the Finite Element Method (FEM), with an introduction to FEM and many case studies of its use in engineering practice. It supports engineers and students to solve primarily linear problems in mechanical engineering, with a main focus on static and dynamic structural problems. Readers of this text are encouraged to discover the proper relationship between theory and practice, within the finite element method: Practice without theory is blind, but theory without practice is sterile. Beginning with elasticity basic concepts and the classical theories of stressed materials, the work goes on to apply the relationship between forces, displacements, stresses and strains on the process of modeling, simulating and designing engineered technical systems. Chapters discuss the finite element equations for static, eigenvalue analysis, as well as transient analyses. Students and practitioners using commercial FEM software will find this book very helpful. It uses straightforward examples to demonstrate a complete and detailed finite element procedure, emphasizing the differences between exact and numerical procedures.

The Finite Element Method in Thin Shell Theory: Application to Arch Dam Simulations

Author: Bernardou,Boisserie

Publisher: Springer Science & Business Media

ISBN: 1468491431

Category: Mathematics

Page: 199

View: 3287

~his Monograph has two objectives : to analyze a f inite e l e m en t m e th o d useful for solving a large class of t hi n shell prob l e ms, and to show in practice how to use this method to simulate an arch dam prob lem. The first objective is developed in Part I. We record the defi- tion of a general thin shell model corresponding to the W.T. KOlTER linear equations and we show the existence and the uniqueness for a solution. By using a co nform ing fi nite e l e m ent me t hod , we associate a family of discrete problems to the continuous problem ; prove the convergence of the method ; and obtain error estimates between exact and approximate solutions. We then describe the impl em enta t ion of some specific conforming methods. The second objective is developed in Part 2. It consists of applying these finite element methods in the case of a representative practical situation that is an arc h dam pro b le m. This kind of problem is still of great interest, since hydroelectric plants permit the rapid increase of electricity production during the day hours of heavy consumption. This regulation requires construction of new hydroelectric plants on suitable sites, as well as permanent control of existing dams that may be enlightened by numerical stress analysis .

Finite Element Modeling of Elastohydrodynamic Lubrication Problems

Author: Wassim Habchi

Publisher: John Wiley & Sons

ISBN: 1119225140

Category: Technology & Engineering

Page: 464

View: 2489

Covers the latest developments in modeling elastohydrodynamic lubrication (EHL) problems using the finite element method (FEM) This comprehensive guide introduces readers to a powerful technology being used today in the modeling of elastohydrodynamic lubrication (EHL) problems. It provides a general framework based on the finite element method (FEM) for dealing with multi-physical problems of complex nature (such as the EHL problem) and is accompanied by a website hosting a user-friendly FEM software for the treatment of EHL problems, based on the methodology described in the book. Finite Element Modeling of Elastohydrodynamic Lubrication Problems begins with an introduction to both the EHL and FEM fields. It then covers Standard FEM modeling of EHL problems, before going over more advanced techniques that employ model order reduction to allow significant savings in computational overhead. Finally, the book looks at applications that show how the developed modeling framework could be used to accurately predict the performance of EHL contacts in terms of lubricant film thickness, pressure build-up and friction coefficients under different configurations. Finite Element Modeling of Elastohydrodynamic Lubrication Problems offers in-depth chapter coverage of Elastohydrodynamic Lubrication and its FEM Modeling, under Isothermal Newtonian and Generalized-Newtonian conditions with the inclusion of Thermal Effects; Standard FEM Modeling; Advanced FEM Modeling, including Model Order Reduction techniques; and Applications, including Pressure, Film Thickness and Friction Predictions, and Coated EHL. This book: Comprehensively covers the latest technology in modeling EHL problems Focuses on the FEM modeling of EHL problems Incorporates advanced techniques based on model order reduction Covers applications of the method to complex EHL problems Accompanied by a website hosting a user-friendly FEM-based EHL software Finite Element Modeling of Elastohydrodynamic Lubrication Problems is an ideal book for researchers and graduate students in the field of Tribology.

The Finite Element Method

A Practical Course

Author: G.R. Liu,S. S. Quek

Publisher: Butterworth-Heinemann

ISBN: 0080994415

Category: Technology & Engineering

Page: 464

View: 6750

Written for practicing engineers and students alike, this book emphasizes the role of finite element modeling and simulation in the engineering design process. It provides the necessary theories and techniques of the FEM in a concise and easy-to-understand format and applies the techniques to civil, mechanical, and aerospace problems. Updated throughout for current developments in FEM and FEM software, the book also includes case studies, diagrams, illustrations, and tables to help demonstrate the material. Plentiful diagrams, illustrations and tables demonstrate the material Covers modeling techniques that predict how components will operate and tolerate loads, stresses and strains in reality Full set of PowerPoint presentation slides that illustrate and support the book, available on a companion website

Fundamentals of Finite Element Analysis

Linear Finite Element Analysis

Author: Ioannis Koutromanos

Publisher: John Wiley & Sons

ISBN: 1119260086

Category: Technology & Engineering

Page: 712

View: 2555

An introductory textbook covering the fundamentals of linear finite element analysis (FEA) This book constitutes the first volume in a two-volume set that introduces readers to the theoretical foundations and the implementation of the finite element method (FEM). The first volume focuses on the use of the method for linear problems. A general procedure is presented for the finite element analysis (FEA) of a physical problem, where the goal is to specify the values of a field function. First, the strong form of the problem (governing differential equations and boundary conditions) is formulated. Subsequently, a weak form of the governing equations is established. Finally, a finite element approximation is introduced, transforming the weak form into a system of equations where the only unknowns are nodal values of the field function. The procedure is applied to one-dimensional elasticity and heat conduction, multi-dimensional steady-state scalar field problems (heat conduction, chemical diffusion, flow in porous media), multi-dimensional elasticity and structural mechanics (beams/shells), as well as time-dependent (dynamic) scalar field problems, elastodynamics and structural dynamics. Important concepts for finite element computations, such as isoparametric elements for multi-dimensional analysis and Gaussian quadrature for numerical evaluation of integrals, are presented and explained. Practical aspects of FEA and advanced topics, such as reduced integration procedures, mixed finite elements and verification and validation of the FEM are also discussed. Provides detailed derivations of finite element equations for a variety of problems. Incorporates quantitative examples on one-dimensional and multi-dimensional FEA. Provides an overview of multi-dimensional linear elasticity (definition of stress and strain tensors, coordinate transformation rules, stress-strain relation and material symmetry) before presenting the pertinent FEA procedures. Discusses practical and advanced aspects of FEA, such as treatment of constraints, locking, reduced integration, hourglass control, and multi-field (mixed) formulations. Includes chapters on transient (step-by-step) solution schemes for time-dependent scalar field problems and elastodynamics/structural dynamics. Contains a chapter dedicated to verification and validation for the FEM and another chapter dedicated to solution of linear systems of equations and to introductory notions of parallel computing. Includes appendices with a review of matrix algebra and overview of matrix analysis of discrete systems. Accompanied by a website hosting an open-source finite element program for linear elasticity and heat conduction, together with a user tutorial. Fundamentals of Finite Element Analysis: Linear Finite Element Analysis is an ideal text for undergraduate and graduate students in civil, aerospace and mechanical engineering, finite element software vendors, as well as practicing engineers and anybody with an interest in linear finite element analysis.

Introduction to Finite Element Analysis and Design

Author: Nam H. Kim,Bhavani V. Sankar,Ashok V. Kumar

Publisher: John Wiley & Sons

ISBN: 1119078733

Category: Technology & Engineering

Page: 552

View: 1468

Introduces the basic concepts of FEM in an easy-to-use format so that students and professionals can use the method efficiently and interpret results properly Finite element method (FEM) is a powerful tool for solving engineering problems both in solid structural mechanics and fluid mechanics. This book presents all of the theoretical aspects of FEM that students of engineering will need. It eliminates overlong math equations in favour of basic concepts, and reviews of the mathematics and mechanics of materials in order to illustrate the concepts of FEM. It introduces these concepts by including examples using six different commercial programs online. The all-new, second edition of Introduction to Finite Element Analysis and Design provides many more exercise problems than the first edition. It includes a significant amount of material in modelling issues by using several practical examples from engineering applications. The book features new coverage of buckling of beams and frames and extends heat transfer analyses from 1D (in the previous edition) to 2D. It also covers 3D solid element and its application, as well as 2D. Additionally, readers will find an increase in coverage of finite element analysis of dynamic problems. There is also a companion website with examples that are concurrent with the most recent version of the commercial programs. Offers elaborate explanations of basic finite element procedures Delivers clear explanations of the capabilities and limitations of finite element analysis Includes application examples and tutorials for commercial finite element software, such as MATLAB, ANSYS, ABAQUS and NASTRAN Provides numerous examples and exercise problems Comes with a complete solution manual and results of several engineering design projects Introduction to Finite Element Analysis and Design, 2nd Edition is an excellent text for junior and senior level undergraduate students and beginning graduate students in mechanical, civil, aerospace, biomedical engineering, industrial engineering and engineering mechanics.