Fundamentals of Python: Data Structures, 1st ed.

Data Structures

Author: Kenneth A. Lambert

Publisher: Cengage Learning

ISBN: 1285752015

Category: Computers

Page: 448

View: 2438

Written for computer programming students, hobbyists, and professionals, FUNDAMENTALS OF PYTHON: DATA STRUCTURES is an introduction to object-oriented design and data structures using the popular Python programming language. The level of instruction assumes at least one semester of programming in an object-oriented language such as Java, C++, or Python. Through the step-by-step instruction and exercises in this book, you'll cover such topics as the design of collection classes with polymorphism and inheritance, multiple implementations of collection interfaces, and the analysis of the space/time tradeoffs of different collection implementations (specifically array-based implementations and link-based implementations). Collections covered include sets, lists, stacks, queues, trees, dictionaries, and graphs. Get ready to dig into Python data structures with FUNDAMENTALS OF PYTHON: DATA STRUCTURES. - See more at: http://www.cengageptr.com/Topics/TitleDetail/1285752007#sthash.eg5FI6pX.dpuf

Fundamentals of Python: From First Programs through Data Structures

Author: Kenneth Lambert

Publisher: Cengage Learning

ISBN: 1423902181

Category: Computers

Page: 872

View: 7660

In FUNDAMENTALS OF PYTHON: FROM FIRST PROGRAMS THROUGH DATA STRUCTURES, Washington and Lee University professor Kenneth A. Lambert presents all of the important topics in CS1 and CS2 in one volume. This economical format provides instructors with a consistent approach to teaching introductory programming and data structures over a standard two-term course sequence. The book uses the Python programming language, which is both easy to learn for beginners and scales well to advanced applications. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Fundamentals of Python

Data Structures

Author: Kenneth Lambert

Publisher: N.A

ISBN: 9780357122754

Category: Computers

Page: N.A

View: 9431

Fundamentals of Python: First Programs

Author: Kenneth A. Lambert

Publisher: Cengage Learning

ISBN: 1111822700

Category: Computers

Page: 510

View: 7413

In FUNDAMENTALS OF PYTHON: FIRST PROGRAMS, respected author Kenneth A. Lambert presents all of the important topics for a CS1 course while preparing your students to study additional languages. The book uses the Python programming language, which is both easy to learn for beginners and scales well to advanced applications. Lambert's back-to-basics approach will be engaging for your students looking for relevance of the concepts and applications from the text to the real world. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Fundamentals of Python

First Programs and Data Structures, Loose-Leaf Version

Author: Kenneth A. Lambert

Publisher: N.A

ISBN: 9781337699341

Category:

Page: N.A

View: 3948

Master today's required computer science topics while preparing for further study with Lambert's FUNDAMENTALS OF PYTHON: FIRST PROGRAMS. This book's easygoing approach is ideal, no matter what your background. The approach starts with simple algorithmic code and then scales into working with functions, objects, and classes as the problems become more complex and require new abstraction mechanisms. Rather than working only with numeric or text-based applications like other introductory texts, this edition presents graphics, image manipulation, GUIs, and simple networked client/server applications. The author uses Python's standard Turtle graphics module to introduce graphics and to provide open source frameworks for easy image processing and GUI application development.

Datenanalyse mit Python

Auswertung von Daten mit Pandas, NumPy und IPython

Author: Wes McKinney

Publisher: O'Reilly

ISBN: 3960102143

Category: Computers

Page: 542

View: 9882

Erfahren Sie alles über das Manipulieren, Bereinigen, Verarbeiten und Aufbereiten von Datensätzen mit Python: Aktualisiert auf Python 3.6, zeigt Ihnen dieses konsequent praxisbezogene Buch anhand konkreter Fallbeispiele, wie Sie eine Vielzahl von typischen Datenanalyse-Problemen effektiv lösen. Gleichzeitig lernen Sie die neuesten Versionen von pandas, NumPy, IPython und Jupyter kennen.Geschrieben von Wes McKinney, dem Begründer des pandas-Projekts, bietet Datenanalyse mit Python einen praktischen Einstieg in die Data-Science-Tools von Python. Das Buch eignet sich sowohl für Datenanalysten, für die Python Neuland ist, als auch für Python-Programmierer, die sich in Data Science und Scientific Computing einarbeiten wollen. Daten und zugehöriges Material des Buchs sind auf GitHub verfügbar.Aus dem Inhalt:Nutzen Sie die IPython-Shell und Jupyter Notebook für das explorative ComputingLernen Sie Grundfunktionen und fortgeschrittene Features von NumPy kennenSetzen Sie die Datenanalyse-Tools der pandasBibliothek einVerwenden Sie flexible Werkzeuge zum Laden, Bereinigen, Transformieren, Zusammenführen und Umformen von DatenErstellen Sie interformative Visualisierungen mit matplotlibWenden Sie die GroupBy-Mechanismen von pandas an, um Datensätzen zurechtzuschneiden, umzugestalten und zusammenzufassenAnalysieren und manipulieren Sie verschiedenste Zeitreihen-DatenFür diese aktualisierte 2. Auflage wurde der gesamte Code an Python 3.6 und die neuesten Versionen der pandas-Bibliothek angepasst. Neu in dieser Auflage: Informationen zu fortgeschrittenen pandas-Tools sowie eine kurze Einführung in statsmodels und scikit-learn.

Python von Kopf bis Fuß

Aktuell zu Python 3

Author: Paul Barry

Publisher: O'Reilly

ISBN: 3960101368

Category: Computers

Page: 620

View: 4246

Was lernen Sie in diesem Buch? Haben Sie sich schon einmal gewünscht, Sie könnten mit nur einem Buch Python richtig lernen? Mit Python von Kopf bis Fuß schaffen Sie es! Durch die ausgefeilte Von-Kopf-bis-Fuß-Didaktik, die viel mehr als die bloße Syntax und typische How-to-Erklärungen bietet, wird es sogar zum Vergnügen. Python-Grundlagen wie Datenstrukturen und Funktionen verstehen Sie hier schnell, und dann geht es auch schon weiter: Sie programmieren Ihre eigene Web-App, erkunden Datenbank-Management, Ausnahmebehandlung und die Verarbeitung von Daten. Da Python häufig im Data-Science-Umfeld eingesetzt wird, haben in der 2. Auflage diejenigen Techniken ein stärkeres Gewicht bekommen, die in der Welt der Big Data genutzt werden. Wieso sieht dieses Buch so anders aus? In diesem Buch sind die neuesten Erkenntnisse der Kognitionswissenschaft und der Lerntheorie eingeflossen, um Ihnen das Lernen so einfach wie möglich zu machen. Statt einschläfernder Bleiwüsten verwendet dieses Buch eine Vielzahl von Abbildungen und Textstilen, die Ihnen das Wissen direkt ins Hirn spielen – und zwar so, dass es sitzt.

Fundamentals of Python, From First Programs through Data Structures

Author: CTI Reviews

Publisher: Cram101 Textbook Reviews

ISBN: 1467281549

Category: Education

Page: 42

View: 9225

Facts101 is your complete guide to Fundamentals of Python, From First Programs through Data Structures. In this book, you will learn topics such as as those in your book plus much more. With key features such as key terms, people and places, Facts101 gives you all the information you need to prepare for your next exam. Our practice tests are specific to the textbook and we have designed tools to make the most of your limited study time.

Algorithmen - Eine Einführung

Author: Thomas H. Cormen,Charles E. Leiserson,Ronald Rivest,Clifford Stein

Publisher: Walter de Gruyter GmbH & Co KG

ISBN: 3110522012

Category: Computers

Page: 1339

View: 9517

Der "Cormen" bietet eine umfassende und vielseitige Einführung in das moderne Studium von Algorithmen. Es stellt viele Algorithmen Schritt für Schritt vor, behandelt sie detailliert und macht deren Entwurf und deren Analyse allen Leserschichten zugänglich. Sorgfältige Erklärungen zur notwendigen Mathematik helfen, die Analyse der Algorithmen zu verstehen. Den Autoren ist es dabei geglückt, Erklärungen elementar zu halten, ohne auf Tiefe oder mathematische Exaktheit zu verzichten. Jedes der weitgehend eigenständig gestalteten Kapitel stellt einen Algorithmus, eine Entwurfstechnik, ein Anwendungsgebiet oder ein verwandtes Thema vor. Algorithmen werden beschrieben und in Pseudocode entworfen, der für jeden lesbar sein sollte, der schon selbst ein wenig programmiert hat. Zahlreiche Abbildungen verdeutlichen, wie die Algorithmen arbeiten. Ebenfalls angesprochen werden Belange der Implementierung und andere technische Fragen, wobei, da Effizienz als Entwurfskriterium betont wird, die Ausführungen eine sorgfältige Analyse der Laufzeiten der Programme mit ein schließen. Über 1000 Übungen und Problemstellungen und ein umfangreiches Quellen- und Literaturverzeichnis komplettieren das Lehrbuch, dass durch das ganze Studium, aber auch noch danach als mathematisches Nachschlagewerk oder als technisches Handbuch nützlich ist. Für die dritte Auflage wurde das gesamte Buch aktualisiert. Die Änderungen sind vielfältig und umfassen insbesondere neue Kapitel, überarbeiteten Pseudocode, didaktische Verbesserungen und einen lebhafteren Schreibstil. So wurden etwa - neue Kapitel zu van-Emde-Boas-Bäume und mehrfädigen (engl.: multithreaded) Algorithmen aufgenommen, - das Kapitel zu Rekursionsgleichungen überarbeitet, sodass es nunmehr die Teile-und-Beherrsche-Methode besser abdeckt, - die Betrachtungen zu dynamischer Programmierung und Greedy-Algorithmen überarbeitet; Memoisation und der Begriff des Teilproblem-Graphen als eine Möglichkeit, die Laufzeit eines auf dynamischer Programmierung beruhender Algorithmus zu verstehen, werden eingeführt. - 100 neue Übungsaufgaben und 28 neue Problemstellungen ergänzt. Umfangreiches Dozentenmaterial (auf englisch) ist über die Website des US-Verlags verfügbar.

Mehr Hacking mit Python

Eigene Tools entwickeln für Hacker und Pentester

Author: Justin Seitz

Publisher: dpunkt.verlag

ISBN: 3864917530

Category: Computers

Page: 182

View: 7161

Wenn es um die Entwicklung leistungsfähiger und effizienter Hacking-Tools geht, ist Python für die meisten Sicherheitsanalytiker die Sprache der Wahl. Doch wie genau funktioniert das? In dem neuesten Buch von Justin Seitz - dem Autor des Bestsellers »Hacking mit Python« - entdecken Sie Pythons dunkle Seite. Sie entwickeln Netzwerk-Sniffer, manipulieren Pakete, infizieren virtuelle Maschinen, schaffen unsichtbare Trojaner und vieles mehr. Sie lernen praktisch, wie man • einen »Command-and-Control«-Trojaner mittels GitHub schafft • Sandboxing erkennt und gängige Malware-Aufgaben wie Keylogging und Screenshotting automatisiert • Windows-Rechte mittels kreativer Prozesskontrolle ausweitet • offensive Speicherforensik-Tricks nutzt, um Passwort-Hashes abzugreifen und Shellcode in virtuelle Maschinen einzuspeisen • das beliebte Web-Hacking-Tool Burp erweitert • die Windows COM-Automatisierung nutzt, um einen Man-in-the-Middle-Angriff durchzuführen • möglichst unbemerkt Daten aus einem Netzwerk abgreift Eine Reihe von Insider-Techniken und kreativen Aufgaben zeigen Ihnen, wie Sie die Hacks erweitern und eigene Exploits entwickeln können.

Data Science Fundamentals for Python and MongoDB

Author: David Paper

Publisher: Apress

ISBN: 1484235975

Category: Computers

Page: 214

View: 5408

Build the foundational data science skills necessary to work with and better understand complex data science algorithms. This example-driven book provides complete Python coding examples to complement and clarify data science concepts, and enrich the learning experience. Coding examples include visualizations whenever appropriate. The book is a necessary precursor to applying and implementing machine learning algorithms. The book is self-contained. All of the math, statistics, stochastic, and programming skills required to master the content are covered. In-depth knowledge of object-oriented programming isn’t required because complete examples are provided and explained. Data Science Fundamentals with Python and MongoDB is an excellent starting point for those interested in pursuing a career in data science. Like any science, the fundamentals of data science are a prerequisite to competency. Without proficiency in mathematics, statistics, data manipulation, and coding, the path to success is “rocky” at best. The coding examples in this book are concise, accurate, and complete, and perfectly complement the data science concepts introduced. What You'll Learn Prepare for a career in data science Work with complex data structures in Python Simulate with Monte Carlo and Stochastic algorithms Apply linear algebra using vectors and matrices Utilize complex algorithms such as gradient descent and principal component analysis Wrangle, cleanse, visualize, and problem solve with data Use MongoDB and JSON to work with data Who This Book Is For The novice yearning to break into the data science world, and the enthusiast looking to enrich, deepen, and develop data science skills through mastering the underlying fundamentals that are sometimes skipped over in the rush to be productive. Some knowledge of object-oriented programming will make learning easier.

Programmieren lernen mit Python

Author: Allen B. Downey

Publisher: O'Reilly Germany

ISBN: 3868999477

Category: Computers

Page: 312

View: 7482

Python ist eine moderne, interpretierte, interaktive und objektorientierte Skriptsprache, vielseitig einsetzbar und sehr beliebt. Mit mathematischen Vorkenntnissen ist Python leicht erlernbar und daher die ideale Sprache für den Einstieg in die Welt des Programmierens. Das Buch führt Sie Schritt für Schritt durch die Sprache, beginnend mit grundlegenden Programmierkonzepten, über Funktionen, Syntax und Semantik, Rekursion und Datenstrukturen bis hin zum objektorientierten Design. Jenseits reiner Theorie: Jedes Kapitel enthält passende Übungen und Fallstudien, kurze Verständnistests und kleinere Projekte, an denen Sie die neu erlernten Programmierkonzepte gleich ausprobieren und festigen können. Auf diese Weise können Sie das Gelernte direkt anwenden und die jeweiligen Programmierkonzepte nachvollziehen. Lernen Sie Debugging-Techniken kennen: Am Ende jedes Kapitels finden Sie einen Abschnitt zum Thema Debugging, der Techniken zum Aufspüren und Vermeiden von Bugs sowie Warnungen vor entsprechenden Stolpersteinen in Python enthält. Starten Sie durch: Beginnen Sie mit den Grundlagen der Programmierung und den verschiedenen Programmierkonzepten, und lernen Sie, wie ein Informatiker zu programmieren.

Python kurz & gut

Author: Mark Lutz

Publisher: O'Reilly Germany

ISBN: 3955617718

Category: Computers

Page: 280

View: 5678

Die objektorientierte Sprache Python eignet sich hervorragend zum Schreiben von Skripten, Programmen und Prototypen. Sie ist frei verfügbar, leicht zu lernen und zwischen allen wichtigen Plattformen portabel, einschließlich Linux, Unix, Windows und Mac OS. Damit Sie im Programmieralltag immer den Überblick behalten, sind die verschiedenen Sprachmerkmale und Elemente in Python – kurz & gut übersichtlich zusammengestellt. Für Auflage 5 wurde die Referenz komplett überarbeitet, erweitert und auf den neuesten Stand gebracht, so dass sie die beiden aktuellen Versionen 2.7 und 3.4 berücksichtigt. Python – kurz & gut behandelt unter anderem: Eingebaute Typen wie Zahlen, Listen, Dictionarys u.v.a.; nweisungen und Syntax für Entwicklung und Ausführung von Objekten; Die objektorientierten Entwicklungstools in Python; Eingebaute Funktionen, Ausnahmen und Attribute; pezielle Methoden zur Operatorenüberladung; Weithin benutzte Standardbibliotheksmodule und Erweiterungen; Kommandozeilenoptionen und Entwicklungswerkzeuge. Mark Lutz stieg 1992 in die Python-Szene ein und ist seitdem als aktiver Pythonista bekannt. Er gibt Kurse, hat zahlreiche Bücher geschrieben und mehrere Python-Systeme programmiert.

Einführung in Python

Author: Mark Lutz,David Ascher,Dinu C. Gherman

Publisher: O'Reilly Germany

ISBN: 3897214881

Category: Python (Computer program language)

Page: 624

View: 3520

Python for Finance

Author: Yuxing Yan

Publisher: Packt Publishing Ltd

ISBN: 1787125025

Category: Computers

Page: 586

View: 3140

Learn and implement various Quantitative Finance concepts using the popular Python libraries About This Book Understand the fundamentals of Python data structures and work with time-series data Implement key concepts in quantitative finance using popular Python libraries such as NumPy, SciPy, and matplotlib A step-by-step tutorial packed with many Python programs that will help you learn how to apply Python to finance Who This Book Is For This book assumes that the readers have some basic knowledge related to Python. However, he/she has no knowledge of quantitative finance. In addition, he/she has no knowledge about financial data. What You Will Learn Become acquainted with Python in the first two chapters Run CAPM, Fama-French 3-factor, and Fama-French-Carhart 4-factor models Learn how to price a call, put, and several exotic options Understand Monte Carlo simulation, how to write a Python program to replicate the Black-Scholes-Merton options model, and how to price a few exotic options Understand the concept of volatility and how to test the hypothesis that volatility changes over the years Understand the ARCH and GARCH processes and how to write related Python programs In Detail This book uses Python as its computational tool. Since Python is free, any school or organization can download and use it. This book is organized according to various finance subjects. In other words, the first edition focuses more on Python, while the second edition is truly trying to apply Python to finance. The book starts by explaining topics exclusively related to Python. Then we deal with critical parts of Python, explaining concepts such as time value of money stock and bond evaluations, capital asset pricing model, multi-factor models, time series analysis, portfolio theory, options and futures. This book will help us to learn or review the basics of quantitative finance and apply Python to solve various problems, such as estimating IBM's market risk, running a Fama-French 3-factor, 5-factor, or Fama-French-Carhart 4 factor model, estimating the VaR of a 5-stock portfolio, estimating the optimal portfolio, and constructing the efficient frontier for a 20-stock portfolio with real-world stock, and with Monte Carlo Simulation. Later, we will also learn how to replicate the famous Black-Scholes-Merton option model and how to price exotic options such as the average price call option. Style and approach This book takes a step-by-step approach in explaining the libraries and modules in Python, and how they can be used to implement various aspects of quantitative finance. Each concept is explained in depth and supplemented with code examples for better understanding.

Statistik-Workshop für Programmierer

Author: Allen B. Downey

Publisher: O'Reilly Germany

ISBN: 3868993436

Category: Computers

Page: 160

View: 9692

Wenn Sie programmieren können, beherrschen Sie bereits Techniken, um aus Daten Wissen zu extrahieren. Diese kompakte Einführung in die Statistik zeigt Ihnen, wie Sie rechnergestützt, anstatt auf mathematischem Weg Datenanalysen mit Python durchführen können. Praktischer Programmier-Workshop statt grauer Theorie: Das Buch führt Sie anhand eines durchgängigen Fallbeispiels durch eine vollständige Datenanalyse -- von der Datensammlung über die Berechnung statistischer Kennwerte und Identifikation von Mustern bis hin zum Testen statistischer Hypothesen. Gleichzeitig werden Sie mit statistischen Verteilungen, den Regeln der Wahrscheinlichkeitsrechnung, Visualisierungsmöglichkeiten und vielen anderen Arbeitstechniken und Konzepten vertraut gemacht. Statistik-Konzepte zum Ausprobieren: Entwickeln Sie über das Schreiben und Testen von Code ein Verständnis für die Grundlagen von Wahrscheinlichkeitsrechnung und Statistik: Überprüfen Sie das Verhalten statistischer Merkmale durch Zufallsexperimente, zum Beispiel indem Sie Stichproben aus unterschiedlichen Verteilungen ziehen. Nutzen Sie Simulationen, um Konzepte zu verstehen, die auf mathematischem Weg nur schwer zugänglich sind. Lernen Sie etwas über Themen, die in Einführungen üblicherweise nicht vermittelt werden, beispielsweise über die Bayessche Schätzung. Nutzen Sie Python zur Bereinigung und Aufbereitung von Rohdaten aus nahezu beliebigen Quellen. Beantworten Sie mit den Mitteln der Inferenzstatistik Fragestellungen zu realen Daten.

Programmieren von Kopf bis Fuß

Author: Paul Barry,David Griffiths

Publisher: O'Reilly Germany

ISBN: 3897219921

Category: Computer programming

Page: 406

View: 873

Python kinderleicht!

Einfach programmieren lernen – nicht nur für Kids

Author: Jason Briggs

Publisher: dpunkt.verlag

ISBN: 3864919053

Category: Computers

Page: 326

View: 9455

Python ist eine leistungsfähige, moderne Programmiersprache. Sie ist einfach zu erlernen und macht Spaß in der Anwendung – mit diesem Buch umso mehr! »Python kinderleicht" macht die Sprache lebendig und zeigt Dir (und Deinen Eltern) die Welt der Programmierung. Jason R. Briggs führt Dich Schritt für Schritt durch die Grundlagen von Python. Du experimentierst mit einzigartigen (und oft urkomischen) Beispielprogrammen, bei denen es um gefräßige Monster, Geheimagenten oder diebische Raben geht. Neue Begriffe werden erklärt, der Programmcode ist farbig dargestellt, strukturiert und mit Erklärungen versehen. Witzige Abbildungen erhöhen den Lernspaß. Jedes Kapitel endet mit Programmier-Rätseln, an denen Du das Gelernte üben und Dein Verständnis vertiefen kannst. Am Ende des Buches wirst Du zwei komplette Spiele programmiert haben: einen Klon des berühmten »Pong" und »Herr Strichmann rennt zum Ausgang" – ein Plattformspiel mit Sprüngen, Animation und vielem mehr. Indem Du Seite für Seite neue Programmierabenteuer bestehst, wirst Du immer mehr zum erfahrenen Python-Programmierer. - Du lernst grundlegende Datenstrukturen wie Listen, Tupel und Maps kennen. - Du erfährst, wie man mit Funktionen und Modulen den Programmcode organisieren und wiederverwenden kann. - Du wirst mit Kontrollstrukturen wie Schleifen und bedingten Anweisungen vertraut und lernst, mit Objekten und Methoden umzugehen. - Du zeichnest Formen mit dem Python-Modul Turtle und erstellst Spiele, Animationen und andere grafische Wunder mit tkinter. Und: »Python kinderleicht" macht auch für Erwachsene das Programmierenlernen zum Kinderspiel! Alle Programme findest Du auch zum Herunterladen auf der Website!