Introduction to Data Mining

Author: Pang-Ning Tan,Michael Steinbach,Anuj Karpatne,Vipin Kumar

Publisher: Addison-Wesley

ISBN: 9780133128901

Category: Computers

Page: 864

View: 7408

Introducing the fundamental concepts and algorithms of data mining Introduction to Data Mining, 2nd Edition , gives a comprehensive overview of the background and general themes of data mining and is designed to be useful to students, instructors, researchers, and professionals. Presented in a clear and accessible way, the book outlines fundamental concepts and algorithms for each topic, thus providing the reader with the necessary background for the application of data mining to real problems. The text helps readers understand the nuances of the subject, and includes important sections on classification, association analysis, and cluster analysis. This edition improves on the first iteration of the book, published over a decade ago, by addressing the significant changes in the industry as a result of advanced technology and data growth.

Discovering Knowledge in Data

An Introduction to Data Mining

Author: Daniel T. Larose

Publisher: John Wiley & Sons

ISBN: 0471687537

Category: Computers

Page: 336

View: 1210

INTRODUCTION TO DATA MINING WITH CASE STUDIES

Author: G. K. GUPTA

Publisher: PHI Learning Pvt. Ltd.

ISBN: 8120350022

Category: Computers

Page: 536

View: 9163

The field of data mining provides techniques for automated discovery of valuable information from the accumulated data of computerized operations of enterprises. This book offers a clear and comprehensive introduction to both data mining theory and practice. It is written primarily as a textbook for the students of computer science, management, computer applications, and information technology. The book ensures that the students learn the major data mining techniques even if they do not have a strong mathematical background. The techniques include data pre-processing, association rule mining, supervised classification, cluster analysis, web data mining, search engine query mining, data warehousing and OLAP. To enhance the understanding of the concepts introduced, and to show how the techniques described in the book are used in practice, each chapter is followed by one or two case studies that have been published in scholarly journals. Most case studies deal with real business problems (for example, marketing, e-commerce, CRM). Studying the case studies provides the reader with a greater insight into the data mining techniques. The book also provides many examples, review questions, multiple choice questions, chapter-end exercises and a good list of references and Web resources especially those which are easy to understand and useful for students. A number of class projects have also been included.

Data Mining: Concepts and Techniques

Author: Jiawei Han,Jian Pei,Micheline Kamber

Publisher: Elsevier

ISBN: 9780123814807

Category: Computers

Page: 744

View: 7739

Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining. Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data

Data Mining

The Textbook

Author: Charu C. Aggarwal

Publisher: Springer

ISBN: 3319141422

Category: Computers

Page: 734

View: 7898

This textbook explores the different aspects of data mining from the fundamentals to the complex data types and their applications, capturing the wide diversity of problem domains for data mining issues. It goes beyond the traditional focus on data mining problems to introduce advanced data types such as text, time series, discrete sequences, spatial data, graph data, and social networks. Until now, no single book has addressed all these topics in a comprehensive and integrated way. The chapters of this book fall into one of three categories: Fundamental chapters: Data mining has four main problems, which correspond to clustering, classification, association pattern mining, and outlier analysis. These chapters comprehensively discuss a wide variety of methods for these problems. Domain chapters: These chapters discuss the specific methods used for different domains of data such as text data, time-series data, sequence data, graph data, and spatial data. Application chapters: These chapters study important applications such as stream mining, Web mining, ranking, recommendations, social networks, and privacy preservation. The domain chapters also have an applied flavor. Appropriate for both introductory and advanced data mining courses, Data Mining: The Textbook balances mathematical details and intuition. It contains the necessary mathematical details for professors and researchers, but it is presented in a simple and intuitive style to improve accessibility for students and industrial practitioners (including those with a limited mathematical background). Numerous illustrations, examples, and exercises are included, with an emphasis on semantically interpretable examples. Praise for Data Mining: The Textbook - “As I read through this book, I have already decided to use it in my classes. This is a book written by an outstanding researcher who has made fundamental contributions to data mining, in a way that is both accessible and up to date. The book is complete with theory and practical use cases. It’s a must-have for students and professors alike!" -- Qiang Yang, Chair of Computer Science and Engineering at Hong Kong University of Science and Technology "This is the most amazing and comprehensive text book on data mining. It covers not only the fundamental problems, such as clustering, classification, outliers and frequent patterns, and different data types, including text, time series, sequences, spatial data and graphs, but also various applications, such as recommenders, Web, social network and privacy. It is a great book for graduate students and researchers as well as practitioners." -- Philip S. Yu, UIC Distinguished Professor and Wexler Chair in Information Technology at University of Illinois at Chicago

Introduction to Business Data Mining

Author: David Olson,Yong Shi

Publisher: Irwin Professional Publishing

ISBN: 9780071244701

Category: Business

Page: 273

View: 4025

Introduction to Business Data Mining was developed to introduce students, as opposed to professional practitioners or engineering students, to the fundamental concepts of data mining. Most importantly, this text shows readers how to gather and analyze large sets of data to gain useful business understanding. A four part organization introduces the material (Part I), describes and demonstrated basic data mining algorithms (Part II), focuses on the business applications of data mining (Part III), and presents an overview of the developing areas in this field, including web mining, text mining, and the ethical aspects of data mining. (Part IV).The author team has had extensive experience with the quantitative analysis of business as well as with data mining analysis. They have both taught this material and used their own graduate students to prepare the text’s data mining reports. Using real-world vignettes and their extensive knowledge of this new subject, David Olson and Yong Shi have created a text that demonstrates data mining processes and techniques needed for business applications.

Data Mining Methods for the Content Analyst

An Introduction to the Computational Analysis of Content

Author: Kalev Leetaru

Publisher: Routledge

ISBN: 0415895138

Category: Language Arts & Disciplines

Page: 102

View: 9414

With continuous advancements and an increase in user popularity, data mining technologies serve as an invaluable resource for researchers across a wide range of disciplines in the humanities and social sciences. In this comprehensive guide, author and research scientist Kalev Leetaru introduces the approaches, strategies, and methodologies of current data mining techniques, offering insights for new and experienced users alike. Designed as an instructive reference to computer-based analysis approaches, each chapter of this resource explains a set of core concepts and analytical data mining strategies, along with detailed examples and steps relating to current data mining practices. Every technique is considered with regard to context, theory of operation and methodological concerns, and focuses on the capabilities and strengths relating to these technologies. In addressing critical methodologies and approaches to automated analytical techniques, this work provides an essential overview to a broad innovative field.

Data Warehousing Fundamentals

A Comprehensive Guide for IT Professionals

Author: Paulraj Ponniah

Publisher: John Wiley & Sons

ISBN: 0471463892

Category: Computers

Page: 544

View: 6666

Geared to IT professionals eager to get into the all-important field of data warehousing, this book explores all topics needed by those who design and implement data warehouses. Readers will learn about planning requirements, architecture, infrastructure, data preparation, information delivery, implementation, and maintenance. They'll also find a wealth of industry examples garnered from the author's 25 years of experience in designing and implementing databases and data warehouse applications for major corporations. Market: IT Professionals, Consultants.

Introduction to Data Mining and its Applications

Author: S. Sumathi,S.N. Sivanandam

Publisher: Springer

ISBN: 3540343512

Category: Computers

Page: 828

View: 5718

This book explores the concepts of data mining and data warehousing, a promising and flourishing frontier in database systems, and presents a broad, yet in-depth overview of the field of data mining. Data mining is a multidisciplinary field, drawing work from areas including database technology, artificial intelligence, machine learning, neural networks, statistics, pattern recognition, knowledge based systems, knowledge acquisition, information retrieval, high performance computing and data visualization.

Introduction to Data Mining for the Life Sciences

Author: Rob Sullivan

Publisher: Springer Science & Business Media

ISBN: 1597452904

Category: Science

Page: 638

View: 8057

Data mining provides a set of new techniques to integrate, synthesize, and analyze tdata, uncovering the hidden patterns that exist within. Traditionally, techniques such as kernel learning methods, pattern recognition, and data mining, have been the domain of researchers in areas such as artificial intelligence, but leveraging these tools, techniques, and concepts against your data asset to identify problems early, understand interactions that exist and highlight previously unrealized relationships through the combination of these different disciplines can provide significant value for the investigator and her organization.

Introduction to Data Mining Using SAS Enterprise Miner

Author: Patricia B. Cerrito

Publisher: SAS Institute

ISBN: 1599943379

Category: Computers

Page: 468

View: 6800

If you have an abundance of data, but no idea what to do with it, this book was written for you! Packed with examples from an array of industries, Introduction to Data Mining Using SAS Enterprise Miner provides you with excellent starting points and practical guidelines to begin data mining today. Author Patricia Cerrito encourages you to think of data mining as a process of exploration rather than as a collection of tools to investigate data. In that way, you choose the methods that will extract the most information from your data, and, while there are no right answers to investigating data sets, there are many questions that can be asked to produce meaningful results. Each answer then creates a path that helps you drill down to explore the data fully. It is up to you to determine what is of interest and what is important to analyze.

Data Mining and Analysis

Fundamental Concepts and Algorithms

Author: Mohammed J. Zaki,Wagner Meira, Jr

Publisher: Cambridge University Press

ISBN: 0521766338

Category: Computers

Page: 562

View: 7950

A comprehensive overview of data mining from an algorithmic perspective, integrating related concepts from machine learning and statistics.

Introduction To Data Mining

Author: Chaitanya P Agrawal, Meena Agrawal

Publisher: Educreation Publishing

ISBN: N.A

Category: Self-Help

Page: 112

View: 1218

This book is a small endeavor to share the journey of getting introduced to a wonderful topic Data Mining. Personally we came across this during the process of evaluating new tools to be included in the post graduate study curricula of the University we are working in. Soon it became a friendly affair to see the power, potential and ease of empowering the databases with concepts of data mining. It has become powerful in rediscovering the hidden values in data base and soon in data warehouse, equally efficiently. The Data mining is a powerful new technology with great potential focusing on the most important information in their data warehouses. It involves extraction of hidden predictive information from large databases with ease and efficiency. It facilitates to make proactive, knowledge-driven decisions and predict future trends and behaviors. Data mining tools move beyond the analyses of past events provided by retrospective tools typical of decision support systems. The automated, prospective analyses offered by data mining tools can answer finding predictive information easily. This small book is an introduction to the basics of data mining. It also introduces the techniques and technologies behind data mining, the impact of artificial intelligence, artificial neural networks, and fuzzy logic et cetera as the basic building blocks for the same. It concludes with common practical applications, trends and its impact on social and computing environment.

Introduction to Data Technologies

Author: Paul Murrell

Publisher: CRC Press

ISBN: 9781420065183

Category: Mathematics

Page: 418

View: 6450

Providing key information on how to work with research data, Introduction to Data Technologies presents ideas and techniques for performing critical, behind-the-scenes tasks that take up so much time and effort yet typically receive little attention in formal education. With a focus on computational tools, the book shows readers how to improve their awareness of what tasks can be achieved and describes the correct approach to perform these tasks. Practical examples demonstrate the most important points The author first discusses how to write computer code using HTML as a concrete example. He then covers a variety of data storage topics, including different file formats, XML, and the structure and design issues of relational databases. After illustrating how to extract data from a relational database using SQL, the book presents tools and techniques for searching, sorting, tabulating, and manipulating data. It also introduces some very basic programming concepts as well as the R language for statistical computing. Each of these topics has supporting chapters that offer reference material on HTML, CSS, XML, DTD, SQL, R, and regular expressions. One-stop shop of introductory computing information Written by a member of the R Development Core Team, this resource shows readers how to apply data technologies to tasks within a research setting. Collecting material otherwise scattered across many books and the web, it explores how to publish information via the web, how to access information stored in different formats, and how to write small programs to automate simple, repetitive tasks.

The Top Ten Algorithms in Data Mining

Author: Xindong Wu,Vipin Kumar

Publisher: CRC Press

ISBN: 9781420089653

Category: Computers

Page: 208

View: 4644

Identifying some of the most influential algorithms that are widely used in the data mining community, The Top Ten Algorithms in Data Mining provides a description of each algorithm, discusses its impact, and reviews current and future research. Thoroughly evaluated by independent reviewers, each chapter focuses on a particular algorithm and is written by either the original authors of the algorithm or world-class researchers who have extensively studied the respective algorithm. The book concentrates on the following important algorithms: C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. Examples illustrate how each algorithm works and highlight its overall performance in a real-world application. The text covers key topics—including classification, clustering, statistical learning, association analysis, and link mining—in data mining research and development as well as in data mining, machine learning, and artificial intelligence courses. By naming the leading algorithms in this field, this book encourages the use of data mining techniques in a broader realm of real-world applications. It should inspire more data mining researchers to further explore the impact and novel research issues of these algorithms.

Cluster Analysis and Data Mining

An Introduction

Author: Ronald S. King

Publisher: N.A

ISBN: 9781938549380

Category: Computers

Page: 300

View: 393

Applicable to either a course on clustering and classification or as a companion text for a first class in applied statistics.

Data Mining: Practical Machine Learning Tools and Techniques

Author: Ian H. Witten,Eibe Frank,Mark A. Hall

Publisher: Elsevier

ISBN: 0080890369

Category: Computers

Page: 664

View: 2896

Data Mining: Practical Machine Learning Tools and Techniques, Third Edition, offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining. Thorough updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including new material on Data Transformations, Ensemble Learning, Massive Data Sets, Multi-instance Learning, plus a new version of the popular Weka machine learning software developed by the authors. Witten, Frank, and Hall include both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. The book is targeted at information systems practitioners, programmers, consultants, developers, information technology managers, specification writers, data analysts, data modelers, database R&D professionals, data warehouse engineers, data mining professionals. The book will also be useful for professors and students of upper-level undergraduate and graduate-level data mining and machine learning courses who want to incorporate data mining as part of their data management knowledge base and expertise. Provides a thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques to your data mining projects Offers concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods Includes downloadable Weka software toolkit, a collection of machine learning algorithms for data mining tasks—in an updated, interactive interface. Algorithms in toolkit cover: data pre-processing, classification, regression, clustering, association rules, visualization

Practical Applications of Data Mining

Author: Sang C. Suh

Publisher: Jones & Bartlett Publishers

ISBN: 0763785873

Category: Computers

Page: 414

View: 1270

Various topics of data mining techniques are identified and described throughout, including clustering, association rules, rough set theory, probability theory, neural networks, classification, and fuzzy logic. Each of these techniques is explored with a theoretical introduction and its effectiveness is demonstrated with various chapter examples.