Discrete Mathematics and Its Applications

Author: Kenneth H. Rosen

Publisher: McGraw-Hill Science, Engineering & Mathematics

ISBN: 9780072424348

Category: Computer science

Page: 906

View: 7901

Discrete Mathematics and its Applications is a focused introduction to the primary themes in a discrete mathematics course, as introduced through extensive applications, expansive discussion, and detailed exercise sets. These themes include mathematical reasoning, combinatorial analysis, discrete structures, algorithmic thinking, and enhanced problem-solving skills through modeling. Its intent is to demonstrate the relevance and practicality of discrete mathematics to all students. The Fifth Edition includes a more thorough and linear presentation of logic, proof types and proof writing, and mathematical reasoning. This enhanced coverage will provide students with a solid understanding of the material as it relates to their immediate field of study and other relevant subjects. The inclusion of applications and examples to key topics has been significantly addressed to add clarity to every subject. True to the Fourth Edition, the text-specific web site supplements the subject matter in meaningful ways, offering additional material for students and instructors. Discrete math is an active subject with new discoveries made every year. The continual growth and updates to the web site reflect the active nature of the topics being discussed. The book is appropriate for a one- or two-term introductory discrete mathematics course to be taken by students in a wide variety of majors, including computer science, mathematics, and engineering. College Algebra is the only explicit prerequisite.

Introduction to Mathematical Logic, Fourth Edition

Author: Elliott Mendelson

Publisher: CRC Press

ISBN: 9780412808302

Category: Mathematics

Page: 440

View: 6780

The Fourth Edition of this long-established text retains all the key features of the previous editions, covering the basic topics of a solid first course in mathematical logic. This edition includes an extensive appendix on second-order logic, a section on set theory with urlements, and a section on the logic that results when we allow models with empty domains. The text contains numerous exercises and an appendix furnishes answers to many of them. Introduction to Mathematical Logic includes: propositional logic first-order logic first-order number theory and the incompleteness and undecidability theorems of Gödel, Rosser, Church, and Tarski axiomatic set theory theory of computability The study of mathematical logic, axiomatic set theory, and computability theory provides an understanding of the fundamental assumptions and proof techniques that form basis of mathematics. Logic and computability theory have also become indispensable tools in theoretical computer science, including artificial intelligence. Introduction to Mathematical Logic covers these topics in a clear, reader-friendly style that will be valued by anyone working in computer science as well as lecturers and researchers in mathematics, philosophy, and related fields.

Introduction to Mathematical Logic, Fifth Edition

Author: Elliott Mendelson

Publisher: CRC Press

ISBN: 1584888776

Category: Mathematics

Page: 494

View: 8107

Retaining all the key features of the previous editions, Introduction to Mathematical Logic, Fifth Edition explores the principal topics of mathematical logic. It covers propositional logic, first-order logic, first-order number theory, axiomatic set theory, and the theory of computability. The text also discusses the major results of Gödel, Church, Kleene, Rosser, and Turing. New to the Fifth Edition A new section covering basic ideas and results about nonstandard models of number theory A second appendix that introduces modal propositional logic An expanded bibliography Additional exercises and selected answers This long-established text continues to expose students to natural proofs and set-theoretic methods. Only requiring some experience in abstract mathematical thinking, it offers enough material for either a one- or two-semester course on mathematical logic.

Introduction to Mathematical Logic, Fifth Edition

Author: Elliott Mendelson

Publisher: Chapman and Hall/CRC

ISBN: 9781584888765

Category: Mathematics

Page: 494

View: 1449

Retaining all the key features of the previous editions, Introduction to Mathematical Logic, Fifth Edition explores the principal topics of mathematical logic. It covers propositional logic, first-order logic, first-order number theory, axiomatic set theory, and the theory of computability. The text also discusses the major results of Gödel, Church, Kleene, Rosser, and Turing. New to the Fifth Edition A new section covering basic ideas and results about nonstandard models of number theory A second appendix that introduces modal propositional logic An expanded bibliography Additional exercises and selected answers This long-established text continues to expose students to natural proofs and set-theoretic methods. Only requiring some experience in abstract mathematical thinking, it offers enough material for either a one- or two-semester course on mathematical logic.

How to Prove It

A Structured Approach

Author: Daniel J. Velleman

Publisher: Cambridge University Press

ISBN: 9780521675994

Category: Mathematics

Page: 384

View: 1206

Many students have trouble the first time they take a mathematics course in which proofs play a significant role. This new edition of Velleman's successful text will prepare students to make the transition from solving problems to proving theorems by teaching them the techniques needed to read and write proofs. The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. The author shows how complex proofs are built up from these smaller steps, using detailed 'scratch work' sections to expose the machinery of proofs about the natural numbers, relations, functions, and infinite sets. To give students the opportunity to construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. This book will be useful to anyone interested in logic and proofs: computer scientists, philosophers, linguists, and of course mathematicians.

Handbook of Discrete and Combinatorial Mathematics

Author: Kenneth H. Rosen

Publisher: CRC Press

ISBN: 135164405X

Category: Mathematics

Page: 1612

View: 9652

Handbook of Discrete and Combinatorial Mathematics provides a comprehensive reference volume for mathematicians, computer scientists, engineers, as well as students and reference librarians. The material is presented so that key information can be located and used quickly and easily. Each chapter includes a glossary. Individual topics are covered in sections and subsections within chapters, each of which is organized into clearly identifiable parts: definitions, facts, and examples. Examples are provided to illustrate some of the key definitions, facts, and algorithms. Some curious and entertaining facts and puzzles are also included. Readers will also find an extensive collection of biographies. This second edition is a major revision. It includes extensive additions and updates. Since the first edition appeared in 1999, many new discoveries have been made and new areas have grown in importance, which are covered in this edition.

Discrete Structures and Their Interactions

Author: Jason I. Brown

Publisher: CRC Press

ISBN: 1466579420

Category: Computers

Page: 224

View: 9058

Discover the Connections between Different Structures and Fields Discrete Structures and Their Interactions highlights the connections among various discrete structures, including graphs, directed graphs, hypergraphs, partial orders, finite topologies, and simplicial complexes. It also explores their relationships to classical areas of mathematics, such as linear and multilinear algebra, analysis, probability, logic, and topology. The text introduces a number of discrete structures, such as hypergraphs, finite topologies, preorders, simplicial complexes, and order ideals of monomials, that most graduate students in combinatorics, and even some researchers in the field, seldom experience. The author explains how these structures have important applications in many areas inside and outside of combinatorics. He also discusses how to recognize valuable research connections through the structures. Intended for graduate and upper-level undergraduate students in mathematics who have taken an initial course in discrete mathematics or graph theory, this book shows how discrete structures offer new insights into the classical fields of mathematics. It illustrates how to use discrete structures to represent the salient features and discover the underlying combinatorial principles of seemingly unrelated areas of mathematics.

Discrete mathematics

Author: Richard Johnsonbaugh

Publisher: Simon & Schuster Books For Young Readers

ISBN: 9780023596902

Category: Mathematics

Page: 705

View: 1624

This best-selling book provides an accessible introduction to discrete mathematics through an algorithmic approach that focuses on problem- solving techniques. This edition has the techniques of proofs woven into the text as a running theme and each chapter has the problem-solving corner. The text provides complete coverage of: Logic and Proofs; Algorithms; Counting Methods and the Pigeonhole Principle; Recurrence Relations; Graph Theory; Trees; Network Models; Boolean Algebra and Combinatorial Circuits; Automata, Grammars, and Languages; Computational Geometry. For individuals interested in mastering introductory discrete mathematics.

Discrete and Combinatorial Mathematics

An Applied Introduction

Author: Ralph P. Grimaldi

Publisher: Addison Wesley Publishing Company

ISBN: 9780201199123

Category: Computers

Page: 791

View: 1300

*Appropriate for four different courses: Discrete Mathematics; Combinatorics; Graph Theory; Modern Applied Algebra. *Flexible, modular organization. *This text has an enhanced mathematical approach, with carefully thought out examples, including many examples with computer sciences applications. *Carefully thought-out examples, including examples with computer science applications. Students can learn by reading the text. *The Fourth Edition has added more elementary problems, creating a larger variety of level within the problem sets which allows students to establish skills as they practice. *Chapter summaries allow the student to review what they have learned, while historical reviews and biographies bring a human element to their assignments. 1. Fundamentals of Discrete Mathematics. Fundamental Principles of Counting. The Rules of Sum and Product. Permutations. Combinations: . The Binomial Theorem. Combinations with Repetition: Distributions. An Application in the Physical Sciences (Optional). 2. Fundamentals of Logic. Basic Connectives and Truth Tables. Logical Equivalence: The Laws of Logic. Logical Implication: Rules of Inference. The Use of Quantifiers. Quantifiers, Definiti

Discrete Mathematics with Applications

Author: Susanna S. Epp

Publisher: N.A

ISBN: 9781337694193

Category:

Page: 984

View: 7196

DISCRETE MATHEMATICS WITH APPLICATIONS, 5th Edition, explains complex, abstract concepts with clarity and precision and provides a strong foundation for computer science and upper-level mathematics courses of the computer age. Author Susanna Epp presents not only the major themes of discrete mathematics, but also the reasoning that underlies mathematical thought. Students develop the ability to think abstractly as they study the ideas of logic and proof. While learning about such concepts as logic circuits and computer addition, algorithm analysis, recursive thinking, computability, automata, cryptography and combinatorics, students discover that the ideas of discrete mathematics underlie and are essential to today's science and technology.

Das BUCH der Beweise

Author: Martin Aigner,Günter M. Ziegler

Publisher: Springer-Verlag

ISBN: 3662064545

Category: Mathematics

Page: 247

View: 2130

Die elegantesten mathematischen Beweise, spannend und für jeden Interessierten verständlich. "Der Beweis selbst, seine Ästhetik, seine Pointe geht ins Geschichtsbuch der Königin der Wissenschaften ein. Ihre Anmut offenbart sich in dem gelungenen und geschickt illustrierten Buch." Die Zeit

Discrete Mathematics with Applications, Metric Edition

Author: Susanna Epp

Publisher: N.A

ISBN: 9780357114087

Category:

Page: 984

View: 8890

DISCRETE MATHEMATICS WITH APPLICATIONS, 5th Edition, Metric Edition explains complex, abstract concepts with clarity and precision and provides a strong foundation for computer science and upper-level mathematics courses of the computer age. Author Susanna Epp presents not only the major themes of discrete mathematics, but also the reasoning that underlies mathematical thought. Students develop the ability to think abstractly as they study the ideas of logic and proof. While learning about such concepts as logic circuits and computer addition, algorithm analysis, recursive thinking, computability, automata, cryptography and combinatorics, students discover that the ideas of discrete mathematics underlie and are essential to today's science and technology.

Mathematical Logic

Applications and Theory

Author: Jean E. Rubin

Publisher: Holt Rinehart & Winston

ISBN: N.A

Category: Mathematics

Page: 417

View: 7390

Pearls of discrete mathematics

Author: Martin J. Erickson

Publisher: CRC

ISBN: 9781439816165

Category: Computers

Page: 270

View: 7608

This book presents intriguing examples, facts, theorems, and proofs from the world of discrete mathematics. The author presents special topics that are not found elsewhere, including the upward extension of Pascal's triangle, the problem of counting Rook paths and Queen paths, higher-dimensional tic-tac-toe, recurrence relations and generating functions, the pigeonhole principle, information theory and codes, and game theory. He also explores connections between discrete structures and other branches of mathematics, such as combinatorics and algebra. The text includes examples, exercises, and appendices containing Mathematica ® calculations and related Internet resources.

Mathematical masterpieces

further chronicles by the explorers

Author: Arthur Knoebel

Publisher: Springer Verlag

ISBN: N.A

Category: Mathematics

Page: 333

View: 9073

Experience the discovery of mathematics by reading the original work of some of the greatest minds throughout history. Here are the stories of four mathematical adventures, including the Bernoulli numbers as the passage between discrete and continuous phenomena, the search for numerical solutions to equations throughout time, the discovery of curvature and geometric space, and the quest for patterns in prime numbers. Each story is told through the words of the pioneers of mathematical thought. Particular advantages of the historical approach include providing context to mathematical inquiry, perspective to proposed conceptual solutions, and a glimpse into the direction research has taken. The text is ideal for an undergraduate seminar, independent reading, or a capstone course, and offers a wealth of student exercises with a prerequisite of at most multivariable calculus. Book jacket.

Integral Calculus

Author: H. S. Dhami

Publisher: New Age International

ISBN: 9788122413243

Category:

Page: 348

View: 1981

Starting From The Historical Development Of The Subject, The Book Presents A Systematic Treatment Of The Basic Concepts And Techniques Involved In Integral Calculus.Techniques Of Integration, Beta And Gamma Functions, And Multiple Integrals Are Explained In Considerable Detail.Geometrical And Mechanical Applications Of Integration And The Numerical Methods Involved In Computation Of Integrals Are Suitably Highlighted.Each Chapter Includes Several Solved Examples Illustrating The Concepts And Techniques. Many Of These Examples Incorporate The Complete Derivations And Proofs Of The Theorems Discussed In The Text. A Large Number Of Unsolved Problems With Answers Are Also Included.

Naive Mengenlehre

Author: Paul R. Halmos

Publisher: Vandenhoeck & Ruprecht

ISBN: 9783525405277

Category: Arithmetic

Page: 132

View: 656