Introduction to Statistics and Data Analysis

Author: Roxy Peck,Chris Olsen,Jay L. Devore

Publisher: Cengage Learning

ISBN: 1305445961

Category: Mathematics

Page: 844

View: 2754

Roxy Peck, Chris Olsen, and Jay Devore's new edition uses real data and attention-grabbing examples to introduce students to the study of statistics and data analysis. Traditional in structure yet modern in approach, this text guides students through an intuition-based learning process that stresses interpretation and communication of statistical information. Simple notation--including frequent substitution of words for symbols--helps students grasp concepts and cement their comprehension. Hands-on activities and interactive applets allow students to practice statistics firsthand. INTRODUCTION TO STATISTICS AND DATA ANALYSIS includes updated coverage of most major technologies, as well as expanded coverage of probability. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Introduction to Statistics and Data Analysis

Author: Roxy Peck,Chris Olsen,Jay L. Devore

Publisher: Cengage Learning

ISBN: 1111802041

Category: Mathematics

Page: 888

View: 1014

Roxy Peck, Chris Olsen and Jay Devore's new edition uses real data and attention-grabbing examples to introduce students to the study of statistics and data analysis. The Third Edition includes coverage of the graphing calculator and includes expanded coverage of probability. Traditional in structure yet modern in approach, this text guides students through an intuition-based learning process that stresses interpretation and communication of statistical information. It helps students grasp concepts and cement their comprehension by using simple notation-frequently substituting words for symbols. Hands-on activities and interactive applets allow students to practice statistics firsthand. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Introduction to Statistics and Data Analysis

Author: Roxy Peck,Chris Olsen,Jay Devore

Publisher: Cengage Learning

ISBN: 0495118737

Category: Mathematics

Page: 888

View: 7349

Roxy Peck, Chris Olsen and Jay Devore’s new edition uses real data and attention-grabbing examples to introduce students to the study of statistics and data analysis. The Third Edition includes coverage of the graphing calculator and includes expanded coverage of probability. Traditional in structure yet modern in approach, this text guides students through an intuition-based learning process that stresses interpretation and communication of statistical information. It helps students grasp concepts and cement their comprehension by using simple notation-frequently substituting words for symbols. Hands-on activities and interactive applets allow students to practice statistics firsthand. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Introduction to Statistics and Data Analysis

With Exercises, Solutions and Applications in R

Author: Christian Heumann,Michael Schomaker,Shalabh

Publisher: Springer

ISBN: 3319461621

Category: Mathematics

Page: 456

View: 8521

This introductory statistics textbook conveys the essential concepts and tools needed to develop and nurture statistical thinking. It presents descriptive, inductive and explorative statistical methods and guides the reader through the process of quantitative data analysis. In the experimental sciences and interdisciplinary research, data analysis has become an integral part of any scientific study. Issues such as judging the credibility of data, analyzing the data, evaluating the reliability of the obtained results and finally drawing the correct and appropriate conclusions from the results are vital. The text is primarily intended for undergraduate students in disciplines like business administration, the social sciences, medicine, politics, macroeconomics, etc. It features a wealth of examples, exercises and solutions with computer code in the statistical programming language R as well as supplementary material that will enable the reader to quickly adapt all methods to their own applications.

Introduction to Statistics and Data Analysis

For the Behavioral Sciences

Author: Robert S. Lockhart

Publisher: Macmillan

ISBN: 9780716729747

Category: Psychology

Page: 651

View: 3889

In Introduction to Statistics and Data Analysis, Bob Lockhart emphasizes the link between statistical techniques and scientific discovery by focusing on evaluation and comparison of models. It is an intuitive view of statistics that views all methods as variants on a basic theme (evaluating models). Lockhart's realistic approach enables students to examine and question the methods and goals of statistics and to draw clear connections between statistical methods and the research process.

An Introduction to Statistical Methods and Data Analysis

Author: R. Lyman Ott,Micheal T. Longnecker

Publisher: Cengage Learning

ISBN: 1305465520

Category: Mathematics

Page: 1296

View: 8427

Ott and Longnecker's AN INTRODUCTION TO STATISTICAL METHODS AND DATA ANALYSIS, Seventh Edition, provides a broad overview of statistical methods for advanced undergraduate and graduate students from a variety of disciplines who have little or no prior course work in statistics. The authors teach students to solve problems encountered in research projects, to make decisions based on data in general settings both within and beyond the university setting, and to become critical readers of statistical analyses in research papers and news reports. The first eleven chapters present material typically covered in an introductory statistics course, as well as case studies and examples that are often encountered in undergraduate capstone courses. The remaining chapters cover regression modeling and design of experiments. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Introduction to Statistics

Fundamental Concepts and Procedures of Data Analysis

Author: Howard M. Reid

Publisher: SAGE Publications

ISBN: 1483324281

Category: Social Science

Page: 632

View: 9451

Using a truly accessible and reader-friendly approach, Introduction to Statistics: Fundamental Concepts and Procedures of Data Analysis, by Howard M. Reid, redefines the way statistics can be taught and learned. Unlike other books that merely focus on procedures, Reid’s approach balances development of critical thinking skills with application of those skills to contemporary statistical analysis. He goes beyond simply presenting techniques by focusing on the key concepts readers need to master in order to ensure their long-term success. Indeed, this exciting new book offers the perfect foundation upon which readers can build as their studies and careers progress to more advanced forms of statistics. Keeping computational challenges to a minimum, Reid shows readers not only how to conduct a variety of commonly used statistical procedures, but also when each procedure should be utilized and how they are related. Following a review of descriptive statistics, he begins his discussion of inferential statistics with a two-chapter examination of the Chi Square test to introduce students to hypothesis testing, the importance of determining effect size, and the need for post hoc tests. When more complex procedures related to interval/ratio data are covered, students already have a solid understanding of the foundational concepts involved. Exploring challenging topics in an engaging and easy-to-follow manner, Reid builds concepts logically and supports learning through robust pedagogical tools, the use of SPSS, numerous examples, historical quotations, insightful questions, and helpful progress checks.

An Introduction to Statistical Methods and Data Analysis

Author: R. Ott,Micheal Longnecker

Publisher: Nelson Education

ISBN: 1111779988

Category: Mathematics

Page: 1296

View: 6334

Ott and Longnecker’s AN INTRODUCTION TO STATISTICAL METHODS AND DATA ANALYSIS, Sixth Edition, provides a broad overview of statistical methods for advanced undergraduate and graduate students from a variety of disciplines who have little or no prior course work in statistics. The authors teach students to solve problems encountered in research projects, to make decisions based on data in general settings both within and beyond the university setting, and to become critical readers of statistical analyses in research papers and in news reports. The first eleven chapters present material typically covered in an introductory statistics course, as well as case studies and examples that are often encountered in undergraduate capstone courses. The remaining chapters cover regression modeling and design of experiments. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Introduction to Statistics and Data Analysis

Author: Roxy Peck,Chris Olsen,Jay Devore

Publisher: Cengage Learning

ISBN: 0840054904

Category: Mathematics

Page: 944

View: 6867

Roxy Peck, Chris Olsen, and Jay Devore’s new edition uses real data and attention-grabbing examples to introduce students to the study of statistics and data analysis. Traditional in structure yet modern in approach, this text guides students through an intuition-based learning process that stresses interpretation and communication of statistical information. Simple notation--including the frequent substitution of words for symbols--helps students grasp concepts and cement their comprehension. Hands-on activities and interactive applets allow students to practice statistics firsthand. INTRODUCTION TO STATISTICS AND DATA ANALYSIS, 4th Edition, includes updated coverage of the graphing calculator as well as expanded coverage of probability. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Introduction to Statistical Data Analysis for the Life Sciences, Second Edition

Author: Claus Thorn Ekstrom,Helle Sørensen

Publisher: CRC Press

ISBN: 1482238934

Category: Mathematics

Page: 526

View: 8401

A Hands-On Approach to Teaching Introductory Statistics Expanded with over 100 more pages, Introduction to Statistical Data Analysis for the Life Sciences, Second Edition presents the right balance of data examples, statistical theory, and computing to teach introductory statistics to students in the life sciences. This popular textbook covers the mathematics underlying classical statistical analysis, the modeling aspects of statistical analysis and the biological interpretation of results, and the application of statistical software in analyzing real-world problems and datasets. New to the Second Edition A new chapter on non-linear regression models A new chapter that contains examples of complete data analyses, illustrating how a full-fledged statistical analysis is undertaken Additional exercises in most chapters A summary of statistical formulas related to the specific designs used to teach the statistical concepts This text provides a computational toolbox that enables students to analyze real datasets and gain the confidence and skills to undertake more sophisticated analyses. Although accessible with any statistical software, the text encourages a reliance on R. For those new to R, an introduction to the software is available in an appendix. The book also includes end-of-chapter exercises as well as an entire chapter of case exercises that help students apply their knowledge to larger datasets and learn more about approaches specific to the life sciences.

An Introduction to Statistics with Python

With Applications in the Life Sciences

Author: Thomas Haslwanter

Publisher: Springer

ISBN: 3319283162

Category: Computers

Page: 278

View: 4708

This textbook provides an introduction to the free software Python and its use for statistical data analysis. It covers common statistical tests for continuous, discrete and categorical data, as well as linear regression analysis and topics from survival analysis and Bayesian statistics. Working code and data for Python solutions for each test, together with easy-to-follow Python examples, can be reproduced by the reader and reinforce their immediate understanding of the topic. With recent advances in the Python ecosystem, Python has become a popular language for scientific computing, offering a powerful environment for statistical data analysis and an interesting alternative to R. The book is intended for master and PhD students, mainly from the life and medical sciences, with a basic knowledge of statistics. As it also provides some statistics background, the book can be used by anyone who wants to perform a statistical data analysis.

Introduction to Real World Statistics

With Step-By-Step SPSS Instructions

Author: Edward T. Vieira, Jr.

Publisher: Taylor & Francis

ISBN: 1351869817

Category: Education

Page: 628

View: 5718

Introduction to Real World Statistics provides students with the basic concepts and practices of applied statistics, including data management and preparation; an introduction to the concept of probability; data screening and descriptive statistics; various inferential analysis techniques; and a series of exercises that are designed to integrate core statistical concepts. The author’s systematic approach, which assumes no prior knowledge of the subject, equips student practitioners with a fundamental understanding of applied statistics that can be deployed across a wide variety of disciplines and professions. Notable features include: short, digestible chapters that build and integrate statistical skills with real-world applications, demonstrating the flexible usage of statistics for evidence-based decision-making statistical procedures presented in a practical context with less emphasis on technical jargon early chapters that build a foundation before presenting statistical procedures SPSS step-by-step detailed instructions designed to reinforce student understanding real world exercises complete with answers chapter PowerPoints and test banks for instructors.

Think Stats

Author: Allen B. Downey

Publisher: "O'Reilly Media, Inc."

ISBN: 1491907371

Category: Computers

Page: 226

View: 8553

If you know how to program, you have the skills to turn data into knowledge, using tools of probability and statistics. This concise introduction shows you how to perform statistical analysis computationally, rather than mathematically, with programs written in Python. By working with a single case study throughout this thoroughly revised book, you’ll learn the entire process of exploratory data analysis—from collecting data and generating statistics to identifying patterns and testing hypotheses. You’ll explore distributions, rules of probability, visualization, and many other tools and concepts. New chapters on regression, time series analysis, survival analysis, and analytic methods will enrich your discoveries. Develop an understanding of probability and statistics by writing and testing code Run experiments to test statistical behavior, such as generating samples from several distributions Use simulations to understand concepts that are hard to grasp mathematically Import data from most sources with Python, rather than rely on data that’s cleaned and formatted for statistics tools Use statistical inference to answer questions about real-world data

Behavioral Research and Analysis

An Introduction to Statistics within the Context of Experimental Design, Fourth Edition

Author: Max Vercruyssen,Hal W. Hendrick

Publisher: CRC Press

ISBN: 1439897514

Category: Mathematics

Page: 299

View: 9912

Now in its fourth edition, Behavioral Research and Analysis: An Introduction to Statistics within the Context of Experimental Design presents an overview of statistical methods within the context of experimental design. It covers fundamental topics such as data collection, data analysis, interpretation of results, and communication of findings. New in the Fourth Edition: Extensive improvements based on suggestions from those using this book in the classroom Statistical procedures that have been developed and validated since the previous edition Each chapter in the body now contains relevant key words, chapter summaries, key word definitions, and end of chapter exercises (with answers) Revisions to include recent changes in the APA Style Manual When looking for a book for their own use, the authors found none that were totally suitable. They found books that either reviewed the basics of behavioral research and experimental design but provided only cursory coverage of statistical methods or they provided coverage of statistical methods with very little coverage of the research context within which these methods are used. No single resource provided coverage of methodology, statistics, and communication skills. In a classic example of necessity being the mother of invention, the authors created their own. This text is ideal for a single course that reviews research methods, essential statistics through multi-factor analysis of variance, and thesis (or major project) preparation without discussion of derivation of equations, probability theory, or mathematic proofs. It focuses on essential information for getting a research project completed without prerequisite math or statistics training. It has been revised many times to help students at a variety of academic levels (exceptional high school students, undergraduate honors students, masters students, doctoral students, and post-doctoral fellows) across varied academic disciplines (e.g., human factors and ergonomics, behavioral and social sciences, natural sciences, engineering, exercise and sport sciences, business and management, industrial hygiene and safety science, health and medical sciences, and more). Illustrating how to plan, prepare, conduct, and analyze an experimental or research report, the book emphasizes explaining statistical procedures and interpreting obtained results without discussing the derivation of equations or history of the method. Destined to spend more time on your desk than on the shelf, the book will become the single resource you reach for again and again when conducting scientific research and reporting it to the scientific community.

Introduction to Reliability Analysis

Probability Models and Statistical Methods

Author: Shelemyahu Zacks

Publisher: Springer Science & Business Media

ISBN: 1461228549

Category: Mathematics

Page: 212

View: 1310

Reliability analysis is concerned with the analysis of devices and systems whose individual components are prone to failure. This textbook presents an introduction to reliability analysis of repairable and non-repairable systems. It is based on courses given to both undergraduate and graduate students of engineering and statistics as well as in workshops for professional engineers and scientists. As aresult, the book concentrates on the methodology of the subject and on understanding theoretical results rather than on its theoretical development. An intrinsic aspect of reliability analysis is that the failure of components is best modelled using techniques drawn from probability and statistics. Professor Zacks covers all the basic concepts required from these subjects and covers the main modern reliability analysis techniques thoroughly. These include: the graphical analysis of life data, maximum likelihood estimation and bayesian likelihood estimation. Throughout the emphasis is on the practicalities of the subject with numerous examples drawn from industrial and engineering settings.

An Introduction to Secondary Data Analysis with IBM SPSS Statistics

Author: John MacInnes

Publisher: SAGE

ISBN: 1473987717

Category: Social Science

Page: 336

View: 6906

Many professional, high-quality surveys collect data on people's behaviour, experiences, lifestyles and attitudes. The data they produce is more accessible than ever before. This book provides students with a comprehensive introduction to using this data, as well as transactional data and big data sources, in their own research projects. Here you will find all you need to know about locating, accessing, preparing and analysing secondary data, along with step-by-step instructions for using IBM SPSS Statistics. You will learn how to: Create a robust research question and design that suits secondary analysis Locate, access and explore data online Understand data documentation Check and 'clean' secondary data Manage and analyse your data to produce meaningful results Replicate analyses of data in published articles and books Using case studies and video animations to illustrate each step of your research, this book provides you with the quantitative analysis skills you'll need to pass your course, complete your research project and compete in the job market. Exercises throughout the book and on the book's companion website give you an opportunity to practice, check your understanding and work hands on with real data as you're learning.

Statistics Done Wrong

The Woefully Complete Guide

Author: Alex Reinhart

Publisher: No Starch Press

ISBN: 1593276206

Category: Mathematics

Page: 152

View: 3168

Statistics Done Wrong describes how researchers often go wrong and teaches you the best practices for avoiding their mistakes.

An Introduction to Statistical Learning

with Applications in R

Author: Gareth James,Daniela Witten,Trevor Hastie,Robert Tibshirani

Publisher: Springer Science & Business Media

ISBN: 1461471389

Category: Mathematics

Page: 426

View: 4024

An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.

Introduction to Quantitative Data Analysis in the Behavioral and Social Sciences

Author: Michael J. Albers

Publisher: John Wiley & Sons

ISBN: 111929018X

Category: Mathematics

Page: 240

View: 2690

Guides readers through the quantitative data analysis process including contextualizing data within a research situation, connecting data to the appropriate statistical tests, and drawing valid conclusions Introduction to Quantitative Data Analysis in the Behavioral and Social Sciences presents a clear and accessible introduction to the basics of quantitative data analysis and focuses on how to use statistical tests as a key tool for analyzing research data. The book presents the entire data analysis process as a cyclical, multiphase process and addresses the processes of exploratory analysis, decision-making for performing parametric or nonparametric analysis, and practical significance determination. In addition, the author details how data analysis is used to reveal the underlying patterns and relationships between the variables and connects those trends to the data’s contextual situation. Filling the gap in quantitative data analysis literature, this book teaches the methods and thought processes behind data analysis, rather than how to perform the study itself or how to perform individual statistical tests. With a clear and conversational style, readers are provided with a better understanding of the overall structure and methodology behind performing a data analysis as well as the needed techniques to make informed, meaningful decisions during data analysis. The book features numerous data analysis examples in order to emphasize the decision and thought processes that are best followed, and self-contained sections throughout separate the statistical data analysis from the detailed discussion of the concepts allowing readers to reference a specific section of the book for immediate solutions to problems and/or applications. Introduction to Quantitative Data Analysis in the Behavioral and Social Sciences also features coverage of the following: • The overall methodology and research mind-set for how to approach quantitative data analysis and how to use statistics tests as part of research data analysis • A comprehensive understanding of the data, its connection to a research situation, and the most appropriate statistical tests for the data • Numerous data analysis problems and worked-out examples to illustrate the decision and thought processes that reveal underlying patterns and trends • Detailed examples of the main concepts to aid readers in gaining the needed skills to perform a full analysis of research problems • A conversational tone to effectively introduce readers to the basics of how to perform data analysis as well as make meaningful decisions during data analysis Introduction to Quantitative Data Analysis in the Behavioral and Social Sciences is an ideal textbook for upper-undergraduate and graduate-level research method courses in the behavioral and social sciences, statistics, and engineering. This book is also an appropriate reference for practitioners who require a review of quantitative research methods. Michael J. Albers, Ph.D., is Professor in the Department of English at East Carolina University. His research interests include information design with a focus on answering real-world questions, the presentation of complex information, and human–information interaction. Dr. Albers received his Ph.D. in Technical Communication and Rhetoric from Texas Tech University.

Introduction to Statistics

Using Interactive MM*Stat Elements

Author: Wolfgang Karl Härdle,Sigbert Klinke,Bernd Rönz

Publisher: Springer

ISBN: 3319177044

Category: Business & Economics

Page: 516

View: 9877

MM*Stat, together with its enhanced online version with interactive examples, offers a flexible tool that facilitates the teaching of basic statistics. It covers all the topics found in introductory descriptive statistics courses, including simple linear regression and time series analysis, the fundamentals of inferential statistics (probability theory, random sampling and estimation theory), and inferential statistics itself (confidence intervals, testing). MM*Stat is also designed to help students rework class material independently and to promote comprehension with the help of additional examples. Each chapter starts with the necessary theoretical background, which is followed by a variety of examples. The core examples are based on the content of the respective chapter, while the advanced examples, designed to deepen students’ knowledge, also draw on information and material from previous chapters. The enhanced online version helps students grasp the complexity and the practical relevance of statistical analysis through interactive examples and is suitable for undergraduate and graduate students taking their first statistics courses, as well as for undergraduate students in non-mathematical fields, e.g. economics, the social sciences etc. All R codes and data sets may be downloaded via the quantlet download center