Introductory Statistics with R

Author: Peter Dalgaard

Publisher: Springer Science & Business Media

ISBN: 9780387790534

Category: Mathematics

Page: 364

View: 1713

This book provides an elementary-level introduction to R, targeting both non-statistician scientists in various fields and students of statistics. The main mode of presentation is via code examples with liberal commenting of the code and the output, from the computational as well as the statistical viewpoint. Brief sections introduce the statistical methods before they are used. A supplementary R package can be downloaded and contains the data sets. All examples are directly runnable and all graphics in the text are generated from the examples. The statistical methodology covered includes statistical standard distributions, one- and two-sample tests with continuous data, regression analysis, one-and two-way analysis of variance, regression analysis, analysis of tabular data, and sample size calculations. In addition, the last four chapters contain introductions to multiple linear regression analysis, linear models in general, logistic regression, and survival analysis.

Statistik-Workshop für Programmierer

Author: Allen B. Downey

Publisher: O'Reilly Germany

ISBN: 3868993436

Category: Computers

Page: 160

View: 6386

Wenn Sie programmieren können, beherrschen Sie bereits Techniken, um aus Daten Wissen zu extrahieren. Diese kompakte Einführung in die Statistik zeigt Ihnen, wie Sie rechnergestützt, anstatt auf mathematischem Weg Datenanalysen mit Python durchführen können. Praktischer Programmier-Workshop statt grauer Theorie: Das Buch führt Sie anhand eines durchgängigen Fallbeispiels durch eine vollständige Datenanalyse -- von der Datensammlung über die Berechnung statistischer Kennwerte und Identifikation von Mustern bis hin zum Testen statistischer Hypothesen. Gleichzeitig werden Sie mit statistischen Verteilungen, den Regeln der Wahrscheinlichkeitsrechnung, Visualisierungsmöglichkeiten und vielen anderen Arbeitstechniken und Konzepten vertraut gemacht. Statistik-Konzepte zum Ausprobieren: Entwickeln Sie über das Schreiben und Testen von Code ein Verständnis für die Grundlagen von Wahrscheinlichkeitsrechnung und Statistik: Überprüfen Sie das Verhalten statistischer Merkmale durch Zufallsexperimente, zum Beispiel indem Sie Stichproben aus unterschiedlichen Verteilungen ziehen. Nutzen Sie Simulationen, um Konzepte zu verstehen, die auf mathematischem Weg nur schwer zugänglich sind. Lernen Sie etwas über Themen, die in Einführungen üblicherweise nicht vermittelt werden, beispielsweise über die Bayessche Schätzung. Nutzen Sie Python zur Bereinigung und Aufbereitung von Rohdaten aus nahezu beliebigen Quellen. Beantworten Sie mit den Mitteln der Inferenzstatistik Fragestellungen zu realen Daten.

R für Dummies

Author: Andrie de Vries,Robert Leidenfrost

Publisher: John Wiley & Sons

ISBN: 3527812520

Category: Computers

Page: 414

View: 8308

R in a Nutshell

Author: Joseph Adler

Publisher: O'Reilly Germany

ISBN: 3897216507

Category: Computers

Page: 768

View: 7214

Wozu sollte man R lernen? Da gibt es viele Gründe: Weil man damit natürlich ganz andere Möglichkeiten hat als mit einer Tabellenkalkulation wie Excel, aber auch mehr Spielraum als mit gängiger Statistiksoftware wie SPSS und SAS. Anders als bei diesen Programmen hat man nämlich direkten Zugriff auf dieselbe, vollwertige Programmiersprache, mit der die fertigen Analyse- und Visualisierungsmethoden realisiert sind – so lassen sich nahtlos eigene Algorithmen integrieren und komplexe Arbeitsabläufe realisieren. Und nicht zuletzt, weil R offen gegenüber beliebigen Datenquellen ist, von der einfachen Textdatei über binäre Fremdformate bis hin zu den ganz großen relationalen Datenbanken. Zudem ist R Open Source und erobert momentan von der universitären Welt aus die professionelle Statistik. R kann viel. Und Sie können viel mit R machen – wenn Sie wissen, wie es geht. Willkommen in der R-Welt: Installieren Sie R und stöbern Sie in Ihrem gut bestückten Werkzeugkasten: Sie haben eine Konsole und eine grafische Benutzeroberfläche, unzählige vordefinierte Analyse- und Visualisierungsoperationen – und Pakete, Pakete, Pakete. Für quasi jeden statistischen Anwendungsbereich können Sie sich aus dem reichen Schatz der R-Community bedienen. Sprechen Sie R! Sie müssen Syntax und Grammatik von R nicht lernen – wie im Auslandsurlaub kommen Sie auch hier gut mit ein paar aufgeschnappten Brocken aus. Aber es lohnt sich: Wenn Sie wissen, was es mit R-Objekten auf sich hat, wie Sie eigene Funktionen schreiben und Ihre eigenen Pakete schnüren, sind Sie bei der Analyse Ihrer Daten noch flexibler und effektiver. Datenanalyse und Statistik in der Praxis: Anhand unzähliger Beispiele aus Medizin, Wirtschaft, Sport und Bioinformatik lernen Sie, wie Sie Daten aufbereiten, mithilfe der Grafikfunktionen des lattice-Pakets darstellen, statistische Tests durchführen und Modelle anpassen. Danach werden Ihnen Ihre Daten nichts mehr verheimlichen.

Using R for Introductory Statistics, Second Edition

Author: John Verzani

Publisher: CRC Press

ISBN: 1466590734

Category: Mathematics

Page: 518

View: 4245

The second edition of a bestselling textbook, Using R for Introductory Statistics guides students through the basics of R, helping them overcome the sometimes steep learning curve. The author does this by breaking the material down into small, task-oriented steps. The second edition maintains the features that made the first edition so popular, while updating data, examples, and changes to R in line with the current version. See What’s New in the Second Edition: Increased emphasis on more idiomatic R provides a grounding in the functionality of base R. Discussions of the use of RStudio helps new R users avoid as many pitfalls as possible. Use of knitr package makes code easier to read and therefore easier to reason about. Additional information on computer-intensive approaches motivates the traditional approach. Updated examples and data make the information current and topical. The book has an accompanying package, UsingR, available from CRAN, R’s repository of user-contributed packages. The package contains the data sets mentioned in the text (data(package="UsingR")), answers to selected problems (answers()), a few demonstrations (demo()), the errata (errata()), and sample code from the text. The topics of this text line up closely with traditional teaching progression; however, the book also highlights computer-intensive approaches to motivate the more traditional approach. The authors emphasize realistic data and examples and rely on visualization techniques to gather insight. They introduce statistics and R seamlessly, giving students the tools they need to use R and the information they need to navigate the sometimes complex world of statistical computing.

Programmieren mit R

Author: Uwe Ligges

Publisher: Springer-Verlag

ISBN: 3540799982

Category: Computers

Page: 251

View: 5583

R ist eine objektorientierte und interpretierte Sprache und Programmierumgebung für Datenanalyse und Grafik. Ausführlich führt der Autor in die Grundlagen ein und vermittelt eingängig die Struktur der Sprache. So ermöglicht er Lesern den leichten Einstieg: eigene Methoden umsetzen, Objektklassen definieren und Pakete aus Funktionen und zugehöriger Dokumentation zusammenstellen. Detailliert beschreibt er die enormen Grafikfähigkeiten von R. Für alle, die R als flexibles Werkzeug zur Datenanalyse und -visualisierung einsetzen. In 2. Auflage mit vielen Verbesserungen und Neuerungen von R-2.3.x und weiteren von Lesern gewünschten Ergänzungen.

Angewandte Statistik

Methodensammlung mit R

Author: Jürgen Hedderich,Lothar Sachs

Publisher: Springer-Verlag

ISBN: 3662456915

Category: Mathematics

Page: 969

View: 9771

Das Standardwerk für statistische Methoden in den Biowissenschaften und der Medizin. Der "Hedderich/Sachs" erläutert statistische Ansätze und gibt dem Anwender anschaulich und zugleich praxisnah alle notwendigen Methoden an die Hand, um Daten zu gewinnen, zu analysieren und zu beurteilen. Neben Hinweisen und Empfehlungen zur Planung und Auswertung von Studiendaten ermöglichen zahlreiche Beispiele und Querverweise sowie ein umfangreiches Sach- und Literaturverzeichnis einen breit gefächerten Zugang zur Statistik. Entscheidungsdiagramme sowie zusätzliche Verzeichnisse der Übersichten, Abbildungen und Tabellen erleichtern die Orientierung bei der Auswahl und Anwendung statistischer Verfahren. Neben einer schlanken Einführung in das Statistikprogramm R, enthält das Buch für viele Beispiele die entsprechenden Programm-Codes, welche schnell Rechnungen zur Kontrolle sowie mit eigenen Daten ermöglichen. Insbesondere für die 15. Auflage wurde das Buch umfassend bearbeitet. Es enthält zahlreiche Präzisierungen, neu aufgenommene Ansätze mit Beispielen sowie weiterführende Ergänzungen.

Statistik mit Excel fÃ1⁄4r Dummies

Author: Joseph Schmuller

Publisher: John Wiley & Sons

ISBN: 3527811702

Category: Computers

Page: 535

View: 8309

Statistiken und Aussagen zu Wahrscheinlichkeiten begegnen uns heute ï¿1⁄2berall: Die Umsatzentwicklung in Unternehmen, Hochrechnungen fï¿1⁄2r Wahlergebnisse, PISA-Ergebnisse fï¿1⁄2nfzehnjï¿1⁄2hriger Schï¿1⁄2ler sind nur drei von zahlreichen Beispielen. Joseph Schmuller zeigt Ihnen in diesem Buch, wie Sie die Zahlen in den Griff bekommen und Daten, Statistiken und Wahrscheinlichkeiten richtig lesen und interpretieren. Dafï¿1⁄2r brauchen Sie keinen Statistikkurs zu belegen und kein Mathegenie zu sein. Fï¿1⁄2r alles gibt es in Excel die passende Funktion und das passende Werkzeug. So kï¿1⁄2nnen Sie Theorie und Praxis sofort miteinander verbinden.

Statistik mit R

Author: Michael J. Crawley

Publisher: John Wiley & Sons

ISBN: 3527506993

Category: Mathematical statistics

Page: 424

View: 2176

Viele statistischen Modelle und Datenanalysen können schwierig zu erfassen und anzuwenden sein. Oft ist zur Erlangung von nützlichen Ergebnissen der Einsatz einer Software notwendig. R ist eine Open-Source-Software, die speziell für statistische Anwendungen programmiert wurde. Entstanden ist sie aus der Programmiersprache S, die später zu S-PLUS weiterentwickelt worden ist. Seit 1995 steht R unter der GNU General Public Licence. Sie ist auf vielen Plattformen verfügbar und gilt im akademischen Bereich heute als statistische Standardsoftware. Michael J. Crawley stellt in seiner Einführung in die Statistik für Nebenfachstudenten die grafische Interpretation von Daten mit R in den Mittelpunkt und hilft durch anschauliche Schritt-für-Schritt-Anleitungen, methodologische Grundlagen zu erarbeiten. Für die Einarbeitung mit dieser Einführung sind Vorkenntnisse in den Bereichen Mathematik, Statistik oder Programmierung nicht zwingend erforderlich. Dies ermöglicht, dass das Buch in vielen wissenschaftlichen Disziplinen eingesetzt werden kann.

Statistik für Dummies

Author: Deborah J. Rumsey

Publisher: John Wiley & Sons

ISBN: 3527692762

Category: Education

Page: 355

View: 2977

Statistik ist ganz sicher kein beliebtes, aber ein notwendiges und auch nï¿1⁄2tzliches Thema. Deborah Rumsey erklï¿1⁄2rt Ihnen in diesem Buch die notwendigen Grundbegriffe, erlï¿1⁄2utert die wichtigsten statistischen Konzepte und schafft einen Bezug zwischen Theorie und Praxis. Dabei kommt Sie fast ohne Formeln aus. Sie lernen die verschiedenen grafischen Darstellungsmï¿1⁄2glichkeiten von statistischem Material kennen und erfahren, wie Sie Ihre Ergebnisse richtig auswerten. Egal ob Mittelwert, Bias, Standardabweichung oder Konfidenzintervall, schon bald kann Ihnen keiner mehr etwas vormachen.

Einführung in Statistik und Messwertanalyse für Physiker

Monographie

Author: G. Bohm,G. Zech

Publisher: N.A

ISBN: 9783540257592

Category:

Page: 400

View: 5057

Die Einf]hrung in die Statistik und Messwertanalyse f]r Physiker richtet sich weniger an mathematischen \berlegungen aus, sondern stellt die praktische Anwendung in den Vordergrund und schdrft die Intuition experimentelle Ergebnisse richtig einzuschdtzen. Zahlreiche ausf]hrlich betrachtete Beispiele dienen dazu, hdufig bei der Datenanalyse gemachte Fehler zu vermeiden (unsinnige Anwendung des Chi-Quadrattests, Funktionenanpassung bei falscher Parametrisierung, Entfaltung mit willk]rlicher Regularisierung). Ein besonderes Augenmerk wird auf den Vergleich von Daten mit Monte-Carlo-Simulationen gelenkt. Moderne Experimente kommen nicht ohne Simulation aus. Deshalb ist es wichtig zu wissen, wie Parameteranpassungen und Entfaltungen in diesem Fall durchgef]rt werden. Au_erdem werden den Studierenden moderne Entwicklungen der Statistik nahegebracht, die in dlteren Lehrb]chern nicht behandelt werden.

Statistical Computing with R

Author: Maria L. Rizzo

Publisher: CRC Press

ISBN: 1498786596

Category: Mathematics

Page: 416

View: 5969

Computational statistics and statistical computing are two areas that employ computational, graphical, and numerical approaches to solve statistical problems, making the versatile R language an ideal computing environment for these fields. One of the first books on these topics to feature R, Statistical Computing with R covers the traditional core material of computational statistics, with an emphasis on using the R language via an examples-based approach. Suitable for an introductory course in computational statistics or for self-study, it includes R code for all examples and R notes to help explain the R programming concepts. After an overview of computational statistics and an introduction to the R computing environment, the book reviews some basic concepts in probability and classical statistical inference. Each subsequent chapter explores a specific topic in computational statistics. These chapters cover the simulation of random variables from probability distributions, the visualization of multivariate data, Monte Carlo integration and variance reduction methods, Monte Carlo methods in inference, bootstrap and jackknife, permutation tests, Markov chain Monte Carlo (MCMC) methods, and density estimation. The final chapter presents a selection of examples that illustrate the application of numerical methods using R functions. Focusing on implementation rather than theory, this text serves as a balanced, accessible introduction to computational statistics and statistical computing.

Angewandte Zeitreihenanalyse mit R

Author: Rainer Schlittgen

Publisher: Walter de Gruyter GmbH & Co KG

ISBN: 311041399X

Category: Business & Economics

Page: 329

View: 3416

Dieses Buch präsentiert die wichtigsten Modelle und Verfahren der Zeitreihenanalyse. Der Schwerpunkt liegt auf dem Zeitbereich; speziell werden explorative Methoden, ARMA-Modelle mit ihren Erweiterungen, Prognosemethoden und Zeitreihenregressionen behandelt. Die Neuauflage wurde akualisiert und unter anderem um ein Kapitel der Long-Memory-Prozesse erweitert.

The R Software

Fundamentals of Programming and Statistical Analysis

Author: Pierre Lafaye de Micheaux,Rémy Drouilhet,Benoit Liquet

Publisher: Springer Science & Business

ISBN: 1461490200

Category: Computers

Page: 628

View: 7065

The contents of The R Software are presented so as to be both comprehensive and easy for the reader to use. Besides its application as a self-learning text, this book can support lectures on R at any level from beginner to advanced. This book can serve as a textbook on R for beginners as well as more advanced users, working on Windows, MacOs or Linux OSes. The first part of the book deals with the heart of the R language and its fundamental concepts, including data organization, import and export, various manipulations, documentation, plots, programming and maintenance. The last chapter in this part deals with oriented object programming as well as interfacing R with C/C++ or Fortran, and contains a section on debugging techniques. This is followed by the second part of the book, which provides detailed explanations on how to perform many standard statistical analyses, mainly in the Biostatistics field. Topics from mathematical and statistical settings that are included are matrix operations, integration, optimization, descriptive statistics, simulations, confidence intervals and hypothesis testing, simple and multiple linear regression, and analysis of variance. Each statistical chapter in the second part relies on one or more real biomedical data sets, kindly made available by the Bordeaux School of Public Health (Institut de Santé Publique, d'Épidémiologie et de Développement - ISPED) and described at the beginning of the book. Each chapter ends with an assessment section: memorandum of most important terms, followed by a section of theoretical exercises (to be done on paper), which can be used as questions for a test. Moreover, worksheets enable the reader to check his new abilities in R. Solutions to all exercises and worksheets are included in this book.

Modern Applied Statistics with S

Author: W.N. Venables,B.D. Ripley

Publisher: Springer Science & Business Media

ISBN: 9780387954578

Category: Mathematics

Page: 498

View: 2324

A guide to using S environments to perform statistical analyses providing both an introduction to the use of S and a course in modern statistical methods. The emphasis is on presenting practical problems and full analyses of real data sets.

Modeling and Simulation

Author: Hartmut Bossel

Publisher: Springer-Verlag

ISBN: 3663108228

Category: Technology & Engineering

Page: 484

View: 1655

This book is the the English Language Version of the very successful German textbook, "Modellbildung und Simulation". It provides a self-contained and complete guide to the methods and mathematical background of modeling and simulation software of dynamic systems. Furthermore, an appropriate simulation software and a collection of dynamic system models (on the accompanying disk) are highlights of the book/software-Package.Dies ist die englischsprachige Ausgabe des sehr erfolgreichen Lehrbuches "Modellbildung und Simulation". Geboten wird eine vollständige Einführung in die Methoden der Simulation dynamischer Systeme, wobei auch der notwendige mathematische Hintergrund vermittelt wird. Außerdem ist eine Simulationssoftware Bestandteil des Werkes; auf der beiliegenden Diskette befinden sich ferner 50 Beispielsysteme ("Systemzoo"), die zur spielerischen Einübung der verwendeten Verfahren hilfreich sind.

Datenanalyse mit Python

Auswertung von Daten mit Pandas, NumPy und IPython

Author: Wes McKinney

Publisher: O'Reilly

ISBN: 3960102143

Category: Computers

Page: 542

View: 6888

Erfahren Sie alles über das Manipulieren, Bereinigen, Verarbeiten und Aufbereiten von Datensätzen mit Python: Aktualisiert auf Python 3.6, zeigt Ihnen dieses konsequent praxisbezogene Buch anhand konkreter Fallbeispiele, wie Sie eine Vielzahl von typischen Datenanalyse-Problemen effektiv lösen. Gleichzeitig lernen Sie die neuesten Versionen von pandas, NumPy, IPython und Jupyter kennen.Geschrieben von Wes McKinney, dem Begründer des pandas-Projekts, bietet Datenanalyse mit Python einen praktischen Einstieg in die Data-Science-Tools von Python. Das Buch eignet sich sowohl für Datenanalysten, für die Python Neuland ist, als auch für Python-Programmierer, die sich in Data Science und Scientific Computing einarbeiten wollen. Daten und zugehöriges Material des Buchs sind auf GitHub verfügbar.Aus dem Inhalt:Nutzen Sie die IPython-Shell und Jupyter Notebook für das explorative ComputingLernen Sie Grundfunktionen und fortgeschrittene Features von NumPy kennenSetzen Sie die Datenanalyse-Tools der pandasBibliothek einVerwenden Sie flexible Werkzeuge zum Laden, Bereinigen, Transformieren, Zusammenführen und Umformen von DatenErstellen Sie interformative Visualisierungen mit matplotlibWenden Sie die GroupBy-Mechanismen von pandas an, um Datensätzen zurechtzuschneiden, umzugestalten und zusammenzufassenAnalysieren und manipulieren Sie verschiedenste Zeitreihen-DatenFür diese aktualisierte 2. Auflage wurde der gesamte Code an Python 3.6 und die neuesten Versionen der pandas-Bibliothek angepasst. Neu in dieser Auflage: Informationen zu fortgeschrittenen pandas-Tools sowie eine kurze Einführung in statsmodels und scikit-learn.

Introduction to Statistics and Data Analysis

With Exercises, Solutions and Applications in R

Author: Christian Heumann,Michael Schomaker,Shalabh

Publisher: Springer

ISBN: 3319461621

Category: Mathematics

Page: 456

View: 1563

This introductory statistics textbook conveys the essential concepts and tools needed to develop and nurture statistical thinking. It presents descriptive, inductive and explorative statistical methods and guides the reader through the process of quantitative data analysis. In the experimental sciences and interdisciplinary research, data analysis has become an integral part of any scientific study. Issues such as judging the credibility of data, analyzing the data, evaluating the reliability of the obtained results and finally drawing the correct and appropriate conclusions from the results are vital. The text is primarily intended for undergraduate students in disciplines like business administration, the social sciences, medicine, politics, macroeconomics, etc. It features a wealth of examples, exercises and solutions with computer code in the statistical programming language R as well as supplementary material that will enable the reader to quickly adapt all methods to their own applications.