Kalman Filtering

Theory and Practice with MATLAB

Author: Mohinder S. Grewal,Angus P. Andrews

Publisher: John Wiley & Sons

ISBN: 111898496X

Category: Technology & Engineering

Page: 640

View: 8511

The definitive textbook and professional reference on Kalman Filtering – fully updated, revised, and expanded This book contains the latest developments in the implementation and application of Kalman filtering. Authors Grewal and Andrews draw upon their decades of experience to offer an in-depth examination of the subtleties, common pitfalls, and limitations of estimation theory as it applies to real-world situations. They present many illustrative examples including adaptations for nonlinear filtering, global navigation satellite systems, the error modeling of gyros and accelerometers, inertial navigation systems, and freeway traffic control. Kalman Filtering: Theory and Practice Using MATLAB, Fourth Edition is an ideal textbook in advanced undergraduate and beginning graduate courses in stochastic processes and Kalman filtering. It is also appropriate for self-instruction or review by practicing engineers and scientists who want to learn more about this important topic.

Kalman Filtering

Theory and Practice with MATLAB

Author: Mohinder S. Grewal,Angus P. Andrews

Publisher: John Wiley & Sons

ISBN: 1118984919

Category: Technology & Engineering

Page: 640

View: 5274

The definitive textbook and professional reference on Kalman Filtering – fully updated, revised, and expanded This book contains the latest developments in the implementation and application of Kalman filtering. Authors Grewal and Andrews draw upon their decades of experience to offer an in-depth examination of the subtleties, common pitfalls, and limitations of estimation theory as it applies to real-world situations. They present many illustrative examples including adaptations for nonlinear filtering, global navigation satellite systems, the error modeling of gyros and accelerometers, inertial navigation systems, and freeway traffic control. Kalman Filtering: Theory and Practice Using MATLAB, Fourth Edition is an ideal textbook in advanced undergraduate and beginning graduate courses in stochastic processes and Kalman filtering. It is also appropriate for self-instruction or review by practicing engineers and scientists who want to learn more about this important topic.

Kalman Filtering

Theory and Practice Using MATLAB

Author: Mohinder S. Grewal,Angus P. Andrews

Publisher: John Wiley & Sons

ISBN: 1118210468

Category: Technology & Engineering

Page: 592

View: 5671

Advanced Kalman Filtering, Least-Squares and Modeling

A Practical Handbook

Author: Bruce P. Gibbs

Publisher: John Wiley & Sons

ISBN: 1118003160

Category: Technology & Engineering

Page: 640

View: 379

This book is intended primarily as a handbook for engineers who must design practical systems. Its primary goal is to discuss model development in sufficient detail so that the reader may design an estimator that meets all application requirements and is robust to modeling assumptions. Since it is sometimes difficult to a priori determine the best model structure, use of exploratory data analysis to define model structure is discussed. Methods for deciding on the “best” model are also presented. A second goal is to present little known extensions of least squares estimation or Kalman filtering that provide guidance on model structure and parameters, or make the estimator more robust to changes in real-world behavior. A third goal is discussion of implementation issues that make the estimator more accurate or efficient, or that make it flexible so that model alternatives can be easily compared. The fourth goal is to provide the designer/analyst with guidance in evaluating estimator performance and in determining/correcting problems. The final goal is to provide a subroutine library that simplifies implementation, and flexible general purpose high-level drivers that allow both easy analysis of alternative models and access to extensions of the basic filtering. Supplemental materials and up-to-date errata are downloadable at http://booksupport.wiley.com.

A Kalman Filter Primer

Author: Randall L. Eubank

Publisher: CRC Press

ISBN: 9781420028676

Category: Mathematics

Page: 200

View: 2656

System state estimation in the presence of noise is critical for control systems, signal processing, and many other applications in a variety of fields. Developed decades ago, the Kalman filter remains an important, powerful tool for estimating the variables in a system in the presence of noise. However, when inundated with theory and vast notations, learning just how the Kalman filter works can be a daunting task. With its mathematically rigorous, “no frills” approach to the basic discrete-time Kalman filter, A Kalman Filter Primer builds a thorough understanding of the inner workings and basic concepts of Kalman filter recursions from first principles. Instead of the typical Bayesian perspective, the author develops the topic via least-squares and classical matrix methods using the Cholesky decomposition to distill the essence of the Kalman filter and reveal the motivations behind the choice of the initializing state vector. He supplies pseudo-code algorithms for the various recursions, enabling code development to implement the filter in practice. The book thoroughly studies the development of modern smoothing algorithms and methods for determining initial states, along with a comprehensive development of the “diffuse” Kalman filter. Using a tiered presentation that builds on simple discussions to more complex and thorough treatments, A Kalman Filter Primer is the perfect introduction to quickly and effectively using the Kalman filter in practice.

Beyond the Kalman Filter: Particle Filters for Tracking Applications

Author: Branko Ristic ,Sanjeev Arulampalam,Neil Gordon

Publisher: Artech House

ISBN: 9781580538510

Category: Technology & Engineering

Page: 299

View: 8768

For most tracking applications the Kalman filter is reliable and efficient, but it is limited to a relatively restricted class of linear Gaussian problems. To solve problems beyond this restricted class, particle filters are proving to be dependable methods for stochastic dynamic estimation. Packed with 867 equations, this cutting-edge book introduces the latest advances in particle filter theory, discusses their relevance to defense surveillance systems, and examines defense-related applications of particle filters to nonlinear and non-Gaussian problems. With this hands-on guide, you can develop more accurate and reliable nonlinear filter designs and more precisely predict the performance of these designs. You can also apply particle filters to tracking a ballistic object, detection and tracking of stealthy targets, tracking through the blind Doppler zone, bi-static radar tracking, passive ranging (bearings-only tracking) of maneuvering targets, range-only tracking, terrain-aided tracking of ground vehicles, and group and extended object tracking.

Global Navigation Satellite Systems, Inertial Navigation, and Integration

Author: Mohinder S. Grewal,Angus P. Andrews,Chris G. Bartone

Publisher: John Wiley & Sons

ISBN: 1118523539

Category: Science

Page: 608

View: 4261

An updated guide to GNSS, and INS, and solutions to real-world GNSS/INS problems with Kalman filtering Written by recognized authorities in the field, this third edition of a landmark work provides engineers, computer scientists, and others with a working familiarity of the theory and contemporary applications of Global Navigation Satellite Systems (GNSS), Inertial Navigational Systems, and Kalman filters. Throughout, the focus is on solving real-world problems, with an emphasis on the effective use of state-of-the-art integration techniques for those systems, especially the application of Kalman filtering. To that end, the authors explore the various subtleties, common failures, and inherent limitations of the theory as it applies to real-world situations, and provide numerous detailed application examples and practice problems, including GNSS-aided INS (tightly and loosely coupled), modeling of gyros and accelerometers, and SBAS and GBAS. Drawing upon their many years of experience with GNSS, INS, and the Kalman filter, the authors present numerous design and implementation techniques not found in other professional references. The Third Edition includes: Updates on the upgrades in existing GNSS and other systems currently under development Expanded coverage of basic principles of antenna design and practical antenna design solutions Expanded coverage of basic principles of receiver design and an update of the foundations for code and carrier acquisition and tracking within a GNSS receiver Expanded coverage of inertial navigation, its history, its technology, and the mathematical models and methods used in its implementation Derivations of dynamic models for the propagation of inertial navigation errors, including the effects of drifting sensor compensation parameters Greatly expanded coverage of GNSS/INS integration, including derivation of a unified GNSS/INS integration model, its MATLAB® implementations, and performance evaluation under simulated dynamic conditions The companion website includes updated background material; additional MATLAB scripts for simulating GNSS-only and integrated GNSS/INS navigation; satellite position determination; calculation of ionosphere delays; and dilution of precision.

Lessons in Estimation Theory for Signal Processing, Communications, and Control

Author: Jerry M. Mendel

Publisher: Pearson Education

ISBN: 0132440792

Category: Technology & Engineering

Page: 592

View: 9666

Estimation theory is a product of need and technology. As a result, it is an integral part of many branches of science and engineering. To help readers differentiate among the rich collection of estimation methods and algorithms, this book describes in detail many of the important estimation methods and shows how they are interrelated. Written as a collection of lessons, this book introduces readers o the general field of estimation theory and includes abundant supplementary material.

Kalman Filtering

with Real-Time Applications

Author: Charles K. Chui,Guanrong Chen

Publisher: Springer

ISBN: 3319476122

Category: Science

Page: 247

View: 3196

This new edition presents a thorough discussion of the mathematical theory and computational schemes of Kalman filtering. The filtering algorithms are derived via different approaches, including a direct method consisting of a series of elementary steps, and an indirect method based on innovation projection. Other topics include Kalman filtering for systems with correlated noise or colored noise, limiting Kalman filtering for time-invariant systems, extended Kalman filtering for nonlinear systems, interval Kalman filtering for uncertain systems, and wavelet Kalman filtering for multiresolution analysis of random signals. Most filtering algorithms are illustrated by using simplified radar tracking examples. The style of the book is informal, and the mathematics is elementary but rigorous. The text is self-contained, suitable for self-study, and accessible to all readers with a minimum knowledge of linear algebra, probability theory, and system engineering. Over 100 exercises and problems with solutions help deepen the knowledge. This new edition has a new chapter on filtering communication networks and data processing, together with new exercises and new real-time applications.

Introduction to Random Signals and Applied Kalman Filtering with Matlab Exercises

Author: Robert Grover Brown,Patrick Y. C. Hwang

Publisher: John Wiley & Sons

ISBN: 9780470609699

Category: Technology & Engineering

Page: 383

View: 4628

Machine generated contents note: PART 1: RANDOM SIGNALS BACKGROUND Chapter 1 Probability and Random Variables: A Review Chapter 2 Mathematical Description of Random Signals Chapter 3 Linear Systems Response, State-space Modeling and Monte Carlo Simulation PART 2: KALMAN FILTERING AND APPLICATIONS Chapter 4 Discrete Kalman Filter Basics Chapter 5 Intermediate Topics on Kalman Filtering Chapter 6 Smoothing and Further Intermediate Topics Chapter 7 Linearization, Nonlinear Filtering and Sampling Bayesian Filters Chapter 8 the "Go-Free" Concept, Complementary Filter and Aided Inertial Examples Chapter 9 Kalman Filter Applications to the GPS and Other Navigation Systems APPENDIX A. Laplace and Fourier Transforms APPENDIX B. The Continuous Kalman Filter.

Kalman Filter for Beginners

With MATLAB Examples

Author: Phil Kim,Lynn Huh

Publisher: CreateSpace

ISBN: 9781463648350

Category: Technology & Engineering

Page: 231

View: 7964

Dwarfs your fear towards complicated mathematical derivations and proofs. Experience Kalman filter with hands-on examples to grasp the essence. A book long awaited by anyone who could not dare to put their first step into Kalman filter. The author presents Kalman filter and other useful filters without complicated mathematical derivation and proof but with hands-on examples in MATLAB that will guide you step-by-step. The book starts with recursive filter and basics of Kalman filter, and gradually expands to application for nonlinear systems through extended and unscented Kalman filters. Also, some topics on frequency analysis including complementary filter are covered. Each chapter is balanced with theoretical background for absolute beginners and practical MATLAB examples to experience the principles explained. Once grabbing the book, you will notice it is not fearful but even enjoyable to learn Kalman filter.

An Introduction to Kalman Filtering with MATLAB Examples

Author: Narayan Kovvali,Mahesh Banavar,Andreas Spanias

Publisher: Morgan & Claypool Publishers

ISBN: 1627051406

Category: Technology & Engineering

Page: 81

View: 3414

The Kalman filter is the Bayesian optimum solution to the problem of sequentially estimating the states of a dynamical system in which the state evolution and measurement processes are both linear and Gaussian. Given the ubiquity of such systems, the Kalman filter finds use in a variety of applications, e.g., target tracking, guidance and navigation, and communications systems. The purpose of this book is to present a brief introduction to Kalman filtering. The theoretical framework of the Kalman filter is first presented, followed by examples showing its use in practical applications. Extensions of the method to nonlinear problems and distributed applications are discussed. A software implementation of the algorithm in the MATLAB programming language is provided, as well as MATLAB code for several example applications discussed in the manuscript.

GPU Programming in MATLAB

Author: Nikolaos Ploskas,Nikolaos Samaras

Publisher: Morgan Kaufmann

ISBN: 0128051337

Category: Computers

Page: 318

View: 7948

GPU programming in MATLAB is intended for scientists, engineers, or students who develop or maintain applications in MATLAB and would like to accelerate their codes using GPU programming without losing the many benefits of MATLAB. The book starts with coverage of the Parallel Computing Toolbox and other MATLAB toolboxes for GPU computing, which allow applications to be ported straightforwardly onto GPUs without extensive knowledge of GPU programming. The next part covers built-in, GPU-enabled features of MATLAB, including options to leverage GPUs across multicore or different computer systems. Finally, advanced material includes CUDA code in MATLAB and optimizing existing GPU applications. Throughout the book, examples and source codes illustrate every concept so that readers can immediately apply them to their own development. Provides in-depth, comprehensive coverage of GPUs with MATLAB, including the parallel computing toolbox and built-in features for other MATLAB toolboxes Explains how to accelerate computationally heavy applications in MATLAB without the need to re-write them in another language Presents case studies illustrating key concepts across multiple fields Includes source code, sample datasets, and lecture slides

Bayesian Signal Processing

Classical, Modern, and Particle Filtering Methods

Author: James V. Candy

Publisher: John Wiley & Sons

ISBN: 1119125472

Category: Technology & Engineering

Page: 640

View: 7376

Presents the Bayesian approach to statistical signal processing for a variety of useful model sets This book aims to give readers a unified Bayesian treatment starting from the basics (Baye’s rule) to the more advanced (Monte Carlo sampling), evolving to the next-generation model-based techniques (sequential Monte Carlo sampling). This next edition incorporates a new chapter on “Sequential Bayesian Detection,” a new section on “Ensemble Kalman Filters” as well as an expansion of Case Studies that detail Bayesian solutions for a variety of applications. These studies illustrate Bayesian approaches to real-world problems incorporating detailed particle filter designs, adaptive particle filters and sequential Bayesian detectors. In addition to these major developments a variety of sections are expanded to “fill-in-the gaps” of the first edition. Here metrics for particle filter (PF) designs with emphasis on classical “sanity testing” lead to ensemble techniques as a basic requirement for performance analysis. The expansion of information theory metrics and their application to PF designs is fully developed and applied. These expansions of the book have been updated to provide a more cohesive discussion of Bayesian processing with examples and applications enabling the comprehension of alternative approaches to solving estimation/detection problems. The second edition of Bayesian Signal Processing features: “Classical” Kalman filtering for linear, linearized, and nonlinear systems; “modern” unscented and ensemble Kalman filters: and the “next-generation” Bayesian particle filters Sequential Bayesian detection techniques incorporating model-based schemes for a variety of real-world problems Practical Bayesian processor designs including comprehensive methods of performance analysis ranging from simple sanity testing and ensemble techniques to sophisticated information metrics New case studies on adaptive particle filtering and sequential Bayesian detection are covered detailing more Bayesian approaches to applied problem solving MATLAB® notes at the end of each chapter help readers solve complex problems using readily available software commands and point out other software packages available Problem sets included to test readers’ knowledge and help them put their new skills into practice Bayesian Signal Processing, Second Edition is written for all students, scientists, and engineers who investigate and apply signal processing to their everyday problems.

Applied Optimal Estimation

Author: Arthur Gelb

Publisher: MIT Press

ISBN: 9780262570480

Category: Computers

Page: 374

View: 3751

This is the first book on the optimal estimation that places its major emphasis on practical applications, treating the subject more from an engineering than a mathematical orientation. Even so, theoretical and mathematical concepts are introduced and developed sufficiently to make the book a self-contained source of instruction for readers without prior knowledge of the basic principles of the field. The work is the product of the technical staff of the The Analytic Sciences Corporation (TASC), an organization whose success has resulted largely from its applications of optimal estimation techniques to a wide variety of real situations involving large-scale systemsArthur Gelb writes in the Foreword that "It is our intent throughout to provide a simple and interesting picture of the central issues underlying modern estimation theory and practice. Heuristic, rather than theoretically elegant, arguments are used extensively, with emphasis on physical insights and key questions of practical importance."Numerous illustrative examples, many based on actual applications, have been interspersed throughout the text to lead the student to a concrete understanding of the theoretical material. The inclusion of problems with "built-in" answers at the end of each of the nine chapters further enhances the self-study potential of the text.After a brief historical prelude, the book introduces the mathematics underlying random process theory and state-space characterization of linear dynamic systems. The theory and practice of optimal estimation is them presented, including filtering, smoothing, and prediction. Both linear and non-linear systems, and continuous- and discrete-time cases, are covered in considerable detail. New results are described concerning the application of covariance analysis to non-linear systems and the connection between observers and optimal estimators. The final chapters treat such practical and often pivotal issues as suboptimal structure, and computer loading considerations.This book is an outgrowth of a course given by TASC at a number of US Government facilities. Virtually all of the members of the TASC technical staff have, at one time and in one way or another, contributed to the material contained in the work

Understanding GPS

Principles and Applications

Author: Elliott Kaplan,Christopher Hegarty

Publisher: Artech House

ISBN: 1580538959

Category: Electronic books

Page: 723

View: 396

This thoroughly updated second edition of an Artech House bestseller brings together a team of leading experts who provide you with a current and comprehensive treatment of the Global Positioning System (GPS). The book covers all the latest advances in technology, applications, and systems. The second edition includes new chapters that explore the integration of GPS with vehicles and cellular telephones, new classes of satellite broadcast signals, the emerging GALILEO system, and new developments in the GPS marketplace. This single-source reference provides both a quick overview of GPS essentials and an in-depth treatment of advanced topics. The book guides you in developing new applications and shows you how to evaluate their performance. It explains all the differential GPS services available to let you decide which is best for particular applications. You learn how to build GPS receivers and integrate them into navigational and communications equipment. Moreover, this unique volume helps you determine how technology is affecting the marketplace and where best to invest your company's resources.

Handbook of Position Location

Theory, Practice and Advances

Author: Reza Zekavat,R. Michael Buehrer

Publisher: John Wiley & Sons

ISBN: 1118104765

Category: Science

Page: 1264

View: 4878

Radio systems capable of localization have emerging applications in homeland security, law enforcement, emergency response, defense command and control, multi-robot coordination and vehicle-to-vehicle and vehicle-to-pedestrian collision avoidance. In fact, high resolution localization is vital for many applications, including: traffic alert, emergency services, e.g., indoor localization for firefighters, and battlefield command and control. These systems promise to dramatically reduce society's vulnerabilities to catastrophic events and improve its quality of of life. While work this important area is progressing, limited resources are available to support graduate students and researchers in this important area. Specifically, a limited number of books has been published in this area covering selected subjects. This comprehensive handbook offers gaps of available localization books presenting in-depth coverage from fundamentals of coordinates to advanced application examples.

Adaptive Filters

Theory and Applications

Author: Behrouz Farhang-Boroujeny

Publisher: John Wiley & Sons

ISBN: 111859133X

Category: Technology & Engineering

Page: 800

View: 5294

This second edition of Adaptive Filters: Theory and Applications has been updated throughout to reflect the latest developments in this field; notably an increased coverage given to the practical applications of the theory to illustrate the much broader range of adaptive filters applications developed in recent years. The book offers an easy to understand approach to the theory and application of adaptive filters by clearly illustrating how the theory explained in the early chapters of the book is modified for the various applications discussed in detail in later chapters. This integrated approach makes the book a valuable resource for graduate students; and the inclusion of more advanced applications including antenna arrays and wireless communications makes it a suitable technical reference for engineers, practitioners and researchers. Key features: • Offers a thorough treatment of the theory of adaptive signal processing; incorporating new material on transform domain, frequency domain, subband adaptive filters, acoustic echo cancellation and active noise control. • Provides an in-depth study of applications which now includes extensive coverage of OFDM, MIMO and smart antennas. • Contains exercises and computer simulation problems at the end of each chapter. • Includes a new companion website hosting MATLAB® simulation programs which complement the theoretical analyses, enabling the reader to gain an in-depth understanding of the behaviours and properties of the various adaptive algorithms.