Locally Conformal Kähler Geometry

Author: Sorin Dragomir,Liuiu Ornea

Publisher: Springer Science & Business Media

ISBN: 1461220262

Category: Mathematics

Page: 330

View: 2455

. E C, 0 1'1 1, and n E Z, n ~ 2. Let~.. be the O-dimensional Lie n group generated by the transformation z ~ >.z, z E C - {a}. Then (cf.

Harmonic Maps and Differential Geometry

A Harmonic Map Fest in Honour of John C. Wood's 60th Birthday, September 7-10, 2009, Cagliari, Italy

Author: John C. Wood

Publisher: American Mathematical Soc.

ISBN: 0821849875

Category: Mathematics

Page: 284

View: 6211

This volume contains the proceedings of a conference held in Cagliari, Italy, from September 7-10, 2009, to celebrate John C. Wood's 60th birthday. These papers reflect the many facets of the theory of harmonic maps and its links and connections with other topics in Differential and Riemannian Geometry. Two long reports, one on constant mean curvature surfaces by F. Pedit and the other on the construction of harmonic maps by J. C. Wood, open the proceedings. These are followed by a mix of surveys on Prof. Wood's area of expertise: Lagrangian surfaces, biharmonic maps, locally conformally Kahler manifolds and the DDVV conjecture, as well as several research papers on harmonic maps. Other research papers in the volume are devoted to Willmore surfaces, Goldstein-Pedrich flows, contact pairs, prescribed Ricci curvature, conformal fibrations, the Fadeev-Hopf model, the Compact Support Principle and the curvature of surfaces.

Harmonic Vector Fields

Variational Principles and Differential Geometry

Author: Sorin Dragomir,Domenico Perrone

Publisher: Elsevier

ISBN: 0124158269

Category: Computers

Page: 508

View: 8150

An excellent reference for anyone needing to examine properties of harmonic vector fields to help them solve research problems. The book provides the main results of harmonic vector fields with an emphasis on Riemannian manifolds using past and existing problems to assist you in analyzing and furnishing your own conclusion for further research. It emphasizes a combination of theoretical development with practical applications for a solid treatment of the subject useful to those new to research using differential geometric methods in extensive detail. A useful tool for any scientist conducting research in the field of harmonic analysis Provides applications and modern techniques to problem solving A clear and concise exposition of differential geometry of harmonic vector fields on Reimannian manifolds Physical Applications of Geometric Methods

Differential Geometry Of Warped Product Manifolds And Submanifolds

Author: Chen Bang-yen

Publisher: World Scientific

ISBN: 9813208945

Category: Mathematics

Page: 516

View: 8028

A warped product manifold is a Riemannian or pseudo-Riemannian manifold whose metric tensor can be decomposed into a Cartesian product of the y geometry and the x geometry — except that the x-part is warped, that is, it is rescaled by a scalar function of the other coordinates y. The notion of warped product manifolds plays very important roles not only in geometry but also in mathematical physics, especially in general relativity. In fact, many basic solutions of the Einstein field equations, including the Schwarzschild solution and the Robertson–Walker models, are warped product manifolds. The first part of this volume provides a self-contained and accessible introduction to the important subject of pseudo-Riemannian manifolds and submanifolds. The second part presents a detailed and up-to-date account on important results of warped product manifolds, including several important spacetimes such as Robertson–Walker's and Schwarzschild's. The famous John Nash's embedding theorem published in 1956 implies that every warped product manifold can be realized as a warped product submanifold in a suitable Euclidean space. The study of warped product submanifolds in various important ambient spaces from an extrinsic point of view was initiated by the author around the beginning of this century. The last part of this volume contains an extensive and comprehensive survey of numerous important results on the geometry of warped product submanifolds done during this century by many geometers.

The Geometry of Walker Manifolds

Author: Miguel Brozos-Vázquez

Publisher: Morgan & Claypool Publishers

ISBN: 1598298194

Category: Mathematics

Page: 159

View: 4882

Basic algebraic notions -- Introduction -- A historical perspective in the algebraic context -- Algebraic preliminaries -- Jordan normal form -- Indefinite geometry -- Algebraic curvature tensors -- Hermitian and para-Hermitian geometry -- The Jacobi and skew symmetric curvature operators -- Sectional, Ricci, scalar, and Weyl curvature -- Curvature decompositions -- Self-duality and anti-self-duality conditions -- Spectral geometry of the curvature operator -- Osserman and conformally Osserman models -- Osserman curvature models in signature (2, 2) -- Ivanov-Petrova curvature models -- Osserman Ivanov-Petrova curvature models -- Commuting curvature models -- Basic geometrical notions -- Introduction -- History -- Basic manifold theory -- The tangent bundle, lie bracket, and lie groups -- The cotangent bundle and symplectic geometry -- Connections, curvature, geodesics, and holonomy -- Pseudo-Riemannian geometry -- The Levi-Civita connection -- Associated natural operators -- Weyl scalar invariants -- Null distributions -- Pseudo-Riemannian holonomy -- Other geometric structures -- Pseudo-Hermitian and para-Hermitian structures -- Hyper-para-Hermitian structures -- Geometric realizations -- Homogeneous spaces, and curvature homogeneity -- Technical results in differential equations -- Walker structures -- Introduction -- Historical development -- Walker coordinates -- Examples of Walker manifolds -- Hypersurfaces with nilpotent shape operators -- Locally conformally flat metrics with nilpotent Ricci operator -- Degenerate pseudo-Riemannian homogeneous structures -- Para-Kaehler geometry -- Two-step nilpotent lie groups with degenerate center -- Conformally symmetric pseudo-Riemannian metrics -- Riemannian extensions -- The affine category -- Twisted Riemannian extensions defined by flat connections -- Modified Riemannian extensions defined by flat connections -- Nilpotent Walker manifolds -- Osserman Riemannian extensions -- Ivanov-Petrova Riemannian extensions -- Three-dimensional Lorentzian Walker manifolds -- Introduction -- History -- Three dimensional Walker geometry -- Adapted coordinates -- The Jordan normal form of the Ricci operator -- Christoffel symbols, curvature, and the Ricci tensor -- Locally symmetric Walker manifolds -- Einstein-like manifolds -- The spectral geometry of the curvature tensor -- Curvature commutativity properties -- Local geometry of Walker manifolds with -- Foliated Walker manifolds -- Contact Walker manifolds -- Strict Walker manifolds -- Three dimensional homogeneous Lorentzian manifolds -- Three dimensional lie groups and lie algebras -- Curvature homogeneous Lorentzian manifolds -- Diagonalizable Ricci operator -- Type II Ricci operator -- Four-dimensional Walker manifolds -- Introduction -- History -- Four-dimensional Walker manifolds -- Almost para-Hermitian geometry -- Isotropic almost para-Hermitian structures -- Characteristic classes -- Self-dual Walker manifolds -- The spectral geometry of the curvature tensor -- Introduction -- History -- Four-dimensional Osserman metrics -- Osserman metrics with diagonalizable Jacobi operator -- Osserman Walker type II metrics -- Osserman and Ivanov-Petrova metrics -- Riemannian extensions of affine surfaces -- Affine surfaces with skew symmetric Ricci tensor -- Affine surfaces with symmetric and degenerate Ricci tensor -- Riemannian extensions with commuting curvature operators -- Other examples with commuting curvature operators -- Hermitian geometry -- Introduction -- History -- Almost Hermitian geometry of Walker manifolds -- The proper almost Hermitian structure of a Walker manifold -- Proper almost hyper-para-Hermitian structures -- Hermitian Walker manifolds of dimension four -- Proper Hermitian Walker structures -- Locally conformally Kaehler structures -- Almost Kaehler Walker four-dimensional manifolds -- Special Walker manifolds -- Introduction -- History -- Curvature commuting conditions -- Curvature homogeneous strict Walker manifolds -- Bibliography.

Geometry and Analysis on Manifolds

In Memory of Professor Shoshichi Kobayashi

Author: Takushiro Ochiai,Toshiki Mabuchi,Yoshiaki Maeda,Junjiro Noguchi,Alan Weinstein

Publisher: Springer

ISBN: 3319115235

Category: Mathematics

Page: 481

View: 9690

This volume is dedicated to the memory of Shoshichi Kobayashi, and gathers contributions from distinguished researchers working on topics close to his research areas. The book is organized into three parts, with the first part presenting an overview of Professor Shoshichi Kobayashi’s career. This is followed by two expository course lectures (the second part) on recent topics in extremal Kähler metrics and value distribution theory, which will be helpful for graduate students in mathematics interested in new topics in complex geometry and complex analysis. Lastly, the third part of the volume collects authoritative research papers on differential geometry and complex analysis. Professor Shoshichi Kobayashi was a recognized international leader in the areas of differential and complex geometry. He contributed crucial ideas that are still considered fundamental in these fields. The book will be of interest to researchers in the fields of differential geometry, complex geometry, and several complex variables geometry, as well as to graduate students in mathematics.

Geometry and Analysis on Manifolds

In Memory of Professor Shoshichi Kobayashi

Author: Takushiro Ochiai,Toshiki Mabuchi,Yoshiaki Maeda,Junjiro Noguchi,Alan Weinstein

Publisher: Springer

ISBN: 3319115235

Category: Mathematics

Page: 481

View: 6098

This volume is dedicated to the memory of Shoshichi Kobayashi, and gathers contributions from distinguished researchers working on topics close to his research areas. The book is organized into three parts, with the first part presenting an overview of Professor Shoshichi Kobayashi’s career. This is followed by two expository course lectures (the second part) on recent topics in extremal Kähler metrics and value distribution theory, which will be helpful for graduate students in mathematics interested in new topics in complex geometry and complex analysis. Lastly, the third part of the volume collects authoritative research papers on differential geometry and complex analysis. Professor Shoshichi Kobayashi was a recognized international leader in the areas of differential and complex geometry. He contributed crucial ideas that are still considered fundamental in these fields. The book will be of interest to researchers in the fields of differential geometry, complex geometry, and several complex variables geometry, as well as to graduate students in mathematics.

Mathematical Reviews

Author: N.A

Publisher: N.A

ISBN: N.A

Category: Mathematics

Page: N.A

View: 9951

Taehan Suhakhoe Chi

Author: N.A

Publisher: N.A

ISBN: N.A

Category: Mathematics

Page: N.A

View: 4857

Matematički Bilten

Author: N.A

Publisher: N.A

ISBN: N.A

Category: Mathematics

Page: N.A

View: 6312

Tensor

Author: N.A

Publisher: N.A

ISBN: N.A

Category: Calculus of tensors

Page: N.A

View: 7684

An Introduction to Extremal Kähler Metrics

Author: Gábor Székelyhidi

Publisher: American Mathematical Soc.

ISBN: 1470410478

Category: Mathematics

Page: 192

View: 7951

A basic problem in differential geometry is to find canonical metrics on manifolds. The best known example of this is the classical uniformization theorem for Riemann surfaces. Extremal metrics were introduced by Calabi as an attempt at finding a higher-dimensional generalization of this result, in the setting of Kähler geometry. This book gives an introduction to the study of extremal Kähler metrics and in particular to the conjectural picture relating the existence of extremal metrics on projective manifolds to the stability of the underlying manifold in the sense of algebraic geometry. The book addresses some of the basic ideas on both the analytic and the algebraic sides of this picture. An overview is given of much of the necessary background material, such as basic Kähler geometry, moment maps, and geometric invariant theory. Beyond the basic definitions and properties of extremal metrics, several highlights of the theory are discussed at a level accessible to graduate students: Yau's theorem on the existence of Kähler-Einstein metrics, the Bergman kernel expansion due to Tian, Donaldson's lower bound for the Calabi energy, and Arezzo-Pacard's existence theorem for constant scalar curvature Kähler metrics on blow-ups.

Geometry of Cauchy-Riemann Submanifolds

Author: Sorin Dragomir,Mohammad Hasan Shahid,Falleh R. Al-Solamy

Publisher: Springer

ISBN: 9811009163

Category: Mathematics

Page: 390

View: 5998

This book gathers contributions by respected experts on the theory of isometric immersions between Riemannian manifolds, and focuses on the geometry of CR structures on submanifolds in Hermitian manifolds. CR structures are a bundle theoretic recast of the tangential Cauchy–Riemann equations in complex analysis involving several complex variables. The book covers a wide range of topics such as Sasakian geometry, Kaehler and locally conformal Kaehler geometry, the tangential CR equations, Lorentzian geometry, holomorphic statistical manifolds, and paraquaternionic CR submanifolds. Intended as a tribute to Professor Aurel Bejancu, who discovered the notion of a CR submanifold of a Hermitian manifold in 1978, the book provides an up-to-date overview of several topics in the geometry of CR submanifolds. Presenting detailed information on the most recent advances in the area, it represents a useful resource for mathematicians and physicists alike.

Recent Advances in Riemannian and Lorentzian Geometries

Author: Krishan L. Duggal,Ramesh Sharma

Publisher: American Mathematical Soc.

ISBN: 0821833790

Category: Mathematics

Page: 202

View: 4643

This volume covers material presented by invited speakers at the AMS special session on Riemannian and Lorentzian geometries held at the annual Joint Mathematics Meetings in Baltimore. Topics covered include classification of curvature-related operators, curvature-homogeneous Einstein 4-manifolds, linear stability/instability singularity and hyperbolic operators of spacetimes, spectral geometry of holomorphic manifolds, cut loci of nilpotent Lie groups, conformal geometry of almost Hermitian manifolds, and also submanifolds of complex and contact spaces. This volume can serve as a good reference source and provide indications for further research. It is suitable for graduate students and research mathematicians interested in differential geometry.

The Ricci Flow in Riemannian Geometry

A Complete Proof of the Differentiable 1/4-Pinching Sphere Theorem

Author: Ben Andrews,Christopher Hopper

Publisher: Springer Science & Business Media

ISBN: 3642162851

Category: Mathematics

Page: 296

View: 7155

Focusing on Hamilton's Ricci flow, this volume begins with a detailed discussion of the required aspects of differential geometry. The discussion also includes existence and regularity theory, compactness theorems for Riemannian manifolds, and much more.

Further Advances in Twistor Theory

Curved Twistor Spaces

Author: L.J. Mason,P.Z. Kobak,L. Hughston,K. Pulverer

Publisher: CRC Press

ISBN: 9781584880479

Category: Mathematics

Page: 432

View: 9580

Although twistor theory originated as an approach to the unification of quantum theory and general relativity, twistor correspondences and their generalizations have provided powerful mathematical tools for studying problems in differential geometry, nonlinear equations, and representation theory. At the same time, the theory continues to offer promising new insights into the nature of quantum theory and gravitation. Further Advances in Twistor Theory, Volume III: Curved Twistor Spaces is actually the fourth in a series of books compiling articles from Twistor Newsletter-a somewhat informal journal published periodically by the Oxford research group of Roger Penrose. Motivated both by questions in differential geometry and by the quest to find a twistor correspondence for general Ricci-flat space times, this volume explores deformed twistor spaces and their applications. Articles from the world's leading researchers in this field-including Roger Penrose-have been written in an informal, easy-to-read style and arranged in four chapters, each supplemented by a detailed introduction. Collectively, they trace the development of the twistor programme over the last 20 years and provide an overview of its recent advances and current status.