Logic and Structure

Author: Dirk van Dalen

Publisher: Springer Science & Business Media

ISBN: 1447145585

Category: Mathematics

Page: 263

View: 8270

Dirk van Dalen’s popular textbook Logic and Structure, now in its fifth edition, provides a comprehensive introduction to the basics of classical and intuitionistic logic, model theory and Gödel’s famous incompleteness theorem. Propositional and predicate logic are presented in an easy-to-read style using Gentzen’s natural deduction. The book proceeds with some basic concepts and facts of model theory: a discussion on compactness, Skolem-Löwenheim, non-standard models and quantifier elimination. The discussion of classical logic is concluded with a concise exposition of second-order logic. In view of the growing recognition of constructive methods and principles, intuitionistic logic and Kripke semantics is carefully explored. A number of specific constructive features, such as apartness and equality, the Gödel translation, the disjunction and existence property are also included. The last chapter on Gödel's first incompleteness theorem is self-contained and provides a systematic exposition of the necessary recursion theory. This new edition has been properly revised and contains a new section on ultra-products.

Proof And Computation: Digitization In Mathematics, Computer Science And Philosophy

Author: Mainzer Klaus,Schwichtenberg Helmut,Schuster Peter Michael

Publisher: World Scientific

ISBN: 9813270950

Category: Mathematics

Page: 300

View: 7776

This book is for graduate students and researchers, introducing modern foundational research in mathematics, computer science, and philosophy from an interdisciplinary point of view. Its scope includes Predicative Foundations, Constructive Mathematics and Type Theory, Computation in Higher Types, Extraction of Programs from Proofs, and Algorithmic Aspects in Financial Mathematics. By filling the gap between (under-)graduate level textbooks and advanced research papers, the book gives a scholarly account of recent developments and emerging branches of the aforementioned fields. Contents: Proof and Computation (K Mainzer) Constructive Convex Programming (J Berger and G Svindland) Exploring Predicativity (L Crosilla) Constructive Functional Analysis: An Introduction (H Ishihara) Program Extraction (K Miyamoto) The Data Structures of the Lambda Terms (M Sato) Provable (and Unprovable) Computability (S Wainer) Introduction to Minlog (F Wiesnet) Readership: Graduate students, researchers, and professionals in Mathematics and Computer Science. Keywords: Proof Theory;Computability Theory;Program Extraction;Constructive Analysis;PredicativityReview: Key Features: This book gathers recent contributions of distinguished experts It makes emerging fields accessible to a wider audience, appealing to a broad readership with diverse backgrounds It fills a gap between (under-)graduate level textbooks and state-of-the-art research papers

Logic as a Tool

A Guide to Formal Logical Reasoning

Author: Valentin Goranko

Publisher: John Wiley & Sons

ISBN: 1118880056

Category: Mathematics

Page: 384

View: 4863

Written in a clear, precise and user-friendly style, Logic as a Tool: A Guide to Formal Logical Reasoning is intended for undergraduates in both mathematics and computer science, and will guide them to learn, understand and master the use of classical logic as a tool for doing correct reasoning. It offers a systematic and precise exposition of classical logic with many examples and exercises, and only the necessary minimum of theory. The book explains the grammar, semantics and use of classical logical languages and teaches the reader how grasp the meaning and translate them to and from natural language. It illustrates with extensive examples the use of the most popular deductive systems -- axiomatic systems, semantic tableaux, natural deduction, and resolution -- for formalising and automating logical reasoning both on propositional and on first-order level, and provides the reader with technical skills needed for practical derivations in them. Systematic guidelines are offered on how to perform logically correct and well-structured reasoning using these deductive systems and the reasoning techniques that they employ. •Concise and systematic exposition, with semi-formal but rigorous treatment of the minimum necessary theory, amply illustrated with examples •Emphasis both on conceptual understanding and on developing practical skills •Solid and balanced coverage of syntactic, semantic, and deductive aspects of logic •Includes extensive sets of exercises, many of them provided with solutions or answers •Supplemented by a website including detailed slides, additional exercises and solutions For more information browse the book's website at: https://logicasatool.wordpress.com

Practical Foundations of Mathematics

Author: Paul Taylor

Publisher: Cambridge University Press

ISBN: 9780521631075

Category: Mathematics

Page: 572

View: 3518

Practical Foundations collects the methods of construction of the objects of twentieth-century mathematics. Although it is mainly concerned with a framework essentially equivalent to intuitionistic Zermelo-Fraenkel logic, the book looks forward to more subtle bases in categorical type theory and the machine representation of mathematics. Each idea is illustrated by wide-ranging examples, and followed critically along its natural path, transcending disciplinary boundaries between universal algebra, type theory, category theory, set theory, sheaf theory, topology and programming. Students and teachers of computing, mathematics and philosophy will find this book both readable and of lasting value as a reference work.

Einführung in die Geometrie und Topologie

Author: Werner Ballmann

Publisher: Springer-Verlag

ISBN: 3034809018

Category: Mathematics

Page: 162

View: 8512

Das Buch bietet eine Einführung in die Topologie, Differentialtopologie und Differentialgeometrie. Es basiert auf Manuskripten, die in verschiedenen Vorlesungszyklen erprobt wurden. Im ersten Kapitel werden grundlegende Begriffe und Resultate aus der mengentheoretischen Topologie bereitgestellt. Eine Ausnahme hiervon bildet der Jordansche Kurvensatz, der für Polygonzüge bewiesen wird und eine erste Idee davon vermitteln soll, welcher Art tiefere topologische Probleme sind. Im zweiten Kapitel werden Mannigfaltigkeiten und Liesche Gruppen eingeführt und an einer Reihe von Beispielen veranschaulicht. Diskutiert werden auch Tangential- und Vektorraumbündel, Differentiale, Vektorfelder und Liesche Klammern von Vektorfeldern. Weiter vertieft wird diese Diskussion im dritten Kapitel, in dem die de Rhamsche Kohomologie und das orientierte Integral eingeführt und der Brouwersche Fixpunktsatz, der Jordan-Brouwersche Zerlegungssatz und die Integralformel von Stokes bewiesen werden. Das abschließende vierte Kapitel ist den Grundlagen der Differentialgeometrie gewidmet. Entlang der Entwicklungslinien, die die Geometrie der Kurven und Untermannigfaltigkeiten in Euklidischen Räumen durchlaufen hat, werden Zusammenhänge und Krümmung, die zentralen Konzepte der Differentialgeometrie, diskutiert. Den Höhepunkt bilden die Gaussgleichungen, die Version des theorema egregium von Gauss für Untermannigfaltigkeiten beliebiger Dimension und Kodimension. Das Buch richtet sich in erster Linie an Mathematik- und Physikstudenten im zweiten und dritten Studienjahr und ist als Vorlage für ein- oder zweisemestrige Vorlesungen geeignet.

Arbeitsmarktintegration

Grundsicherung - Fallmanagement - Zeitarbeit - Arbeitsvermittlung

Author: Franz Egle,Michael Nagy

Publisher: Springer-Verlag

ISBN: 383499667X

Category: Business & Economics

Page: 516

View: 8033

Experten vermitteln anschaulich und nachvollziehbar die Fachkenntnisse, die an allen Schnittstellen des aktiven Arbeitsmarktausgleichs und für die Vorbereitung auf Tätigkeiten im Bereich der Arbeitsvermittlung für unterschiedliche Zielgruppen erforderlich sind. Neben Grundlagenwissen zu allen relevanten Wissensgebieten bietet das Buch Informationen über den aktuellen Stand der Job Center, des Fallmanagements und die Neuregelungen des Sozialgesetzbuches (SGBII) im Rahmen der Arbeitsmarktreformen. Für die 2. Auflage wurden das Berufsbild des Arbeits- und Personalvermittlers, Überlegungen zur Qualifizierung des Vermittlungspersonals sowie Möglichkeiten der Kooperation der einzelnen Vermittlungsakteure neu aufgenommen und zwei aktuelle Themenfelder eingeführt: die Grundsicherung für Arbeitslose im Rahmen der Kombilohndiskussion sowie die Bedeutung der Zeitarbeit als Instrument zur Integration von Langzeitarbeitslosen in den Ersten Arbeitsmarkt.

Vorlesungen Über die Zahlentheorie der Quaternionen

Author: Adolf Hurwitz

Publisher: Springer-Verlag

ISBN: 3642475361

Category: Mathematics

Page: 76

View: 2178

Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.

Analysis 1

Author: V. A. Zorich

Publisher: Springer-Verlag

ISBN: 3540332782

Category: Mathematics

Page: 598

View: 8278

Ausführlicher Einblick in die Anfänge der Analysis: von der Einführung der reellen Zahlen bis hin zu fortgeschrittenen Themen wie Differentialformen auf Mannigfaltigkeiten, asymptotische Betrachtungen, Fourier-, Laplace- und Legendre-Transformationen, elliptische Funktionen und Distributionen. Ausgerichtet auf naturwissenschaftliche Fragestellungen und in detaillierter Herangehensweise an die Integral- und Differentialrechnung. Mit einer Fülle hilfreicher Beispiele, Aufgaben und Anwendungen. In Band 1: vollständige Übersicht zur Integral- und Differentialrechnung einer Variablen, erweitert um die Differentialrechnung mehrerer Variablen.

Hilbert

Author: Constance Reid,Hermann Weyl

Publisher: Springer-Verlag

ISBN: 3662286157

Category: Mathematics

Page: 290

View: 6770

Einführung in die Modallogik

Author: G.E. Hughes,Max J. Cresswell

Publisher: Walter de Gruyter

ISBN: 3110830027

Category: Philosophy

Page: 350

View: 8045

Reelle und Komplexe Analysis

Author: Walter Rudin

Publisher: Walter de Gruyter

ISBN: 9783486591866

Category: Analysis - Lehrbuch

Page: 499

View: 6472

Besonderen Wert legt Rudin darauf, dem Leser die Zusammenhänge unterschiedlicher Bereiche der Analysis zu vermitteln und so die Grundlage für ein umfassenderes Verständnis zu schaffen. Das Werk zeichnet sich durch seine wissenschaftliche Prägnanz und Genauigkeit aus und hat damit die Entwicklung der modernen Analysis in nachhaltiger Art und Weise beeinflusst. Der "Baby-Rudin" gehört weltweit zu den beliebtesten Lehrbüchern der Analysis und ist in 13 Sprachen übersetzt. 1993 wurde es mit dem renommierten Steele Prize for Mathematical Exposition der American Mathematical Society ausgezeichnet. Übersetzt von Uwe Krieg.

Analysis II

Author: Vladimir A. Zorich

Publisher: Springer

ISBN: 9783540462316

Category: Mathematics

Page: 708

View: 8557

Ausführlich, klar, exakt, solide: die Anfänge der Analysis in 2 Bänden. Von der Einführung der reellen Zahlen bis hin zu fortgeschrittenen Themen wie u.a. Differenzialformen auf Mannigfaltigkeiten, asymptotische Betrachtungen, Fourier-, Laplace- und Legendre-Transformationen, elliptische Funktionen und Distributionen. Deutlich auf naturwissenschaftliche Fragen ausgerichtet, erläutert dieses Werk detailliert Begriffe, Inhalte und Sätze der Integral- und Differenzialrechnung. Die Fülle hilfreicher Beispiele, Aufgaben und Anwendungen ist selten in Analysisbüchern zu finden. Band 2 beschreibt den heutigen Stand der klassischen Analysis.

Lehrbuch der Analysis

Author: Harro Heuser

Publisher: Springer-Verlag

ISBN: 3663013715

Category: Mathematics

Page: 643

View: 9160

Dieses Buch ist der erste Teil eines zweibändigen Werkes über Analysis. Es ist aus Vorlesungen, Übungen und Seminaren erwachsen, die ich mehrfach an den Universitäten Mainz und Karlsruhe gehalten habe, und so angelegt, daß es auch zum Selbststudium dienen kann. Ich widerstehe der Versuchung, dem Studenten, der jetzt dieses Vorwort liest, ausführlich die Themen zu beschreiben, die ihn erwarten; denn dazu müßte ich Worte gebrauchen, die er doch erst nach der Lektüre des Buches verstehen kann - nach der Lektüre aber sollte er selbst wissen, was gespielt worden ist. Den Kenner hingegen wird ein Blick auf das Inhaltsverzeichnis und ein rasches Durchblättern ausreichend orientieren. Dennoch halte ich es für möglich, anknüpfend an Schulkenntnisse und Alltagser fahrung auch dem Anfänger verständlich zu machen, was der rote Faden ist, der dieses Buch durchzieht und in welchem Geist es geschrieben wurde und gelesen werden möchte. Der rote Faden, das ständig aufklingende Leitmotiv und energisch vorwärts treibende Hauptproblem ist die Frage, wie man das Änderungsverhalten einer Funktion verstehen, beschreiben und beherrschen kann, schärfer: Welche Be griffe eignen sich am besten dazu, die Änderung einer Funktion "im Kleinen" (also bei geringen Änderungen ihrer unabhängigen Variablen) zu erfassen, was kann man über die Funktion "im Großen", über ihren Gesamtverlauf sagen, wenn man Kenntnisse über ihr Verhalten "im Kleinen" hat, geben uns diese Kenntnisse vielleicht sogar die Funktion gänzlich in die Hand odq besser: Wie tief müssen diese "lokalen Kenntnisse" gehen, um uns die Funktion "global"

Zahlentheorie

Algebraische Zahlen und Funktionen

Author: Helmut Koch

Publisher: Springer-Verlag

ISBN: 3322803120

Category: Mathematics

Page: 344

View: 1859

Hauptziel des Buches ist die Vermittlung des Grundbestandes der Algebraischen Zahlentheorie einschließlich der Theorie der normalen Erweiterungen bis hin zu einem Ausblick auf die Klassenkörpertheorie. Gleichberechtigt mit algebraischen Zahlen werden auch algebraische Funktionen behandelt. Dies geschieht einerseits um die Analogie zwischen Zahl- und Funktionenkörpern aufzuzeigen, die besonders deutlich im Falle eines endlichen Konstantenkörpers ist. Andererseits erhält man auf diese Weise eine Einführung in die Theorie der "höheren Kongruenzen" als eines wesentlichen Bestandteils der "Arithmetischen Geometrie". Obgleich das Buch hauptsächlich algebraischen Methoden gewidmet ist, findet man in der Einleitung auch einen kurzen Beweis des Primzahlsatzes nach Newman. In den Kapiteln 7 und 8 wird die Theorie der Heckeschen L-Reihen behandelt einschließlich der Verteilung der Primideale algebraischer Zahlkörper in Kegeln.

Vorlesungen über partielle Differentialgleichungen

Author: Vladimir I. Arnold

Publisher: Springer-Verlag

ISBN: 3540350314

Category: Mathematics

Page: 174

View: 8076

Nach seinem bekannten und viel verwendeten Buch über gewöhnliche Differentialgleichungen widmet sich der berühmte Mathematiker Vladimir Arnold nun den partiellen Differentialgleichungen in einem neuen Lehrbuch. In seiner unnachahmlich eleganten Art führt er über einen geometrischen, anschaulichen Weg in das Thema ein, und ermöglicht den Lesern so ein vertieftes Verständnis der Natur der partiellen Differentialgleichungen. Für Studierende der Mathematik und Physik ist dieses Buch ein Muss. Wie alle Bücher Vladimir Arnolds ist dieses Buch voller geometrischer Erkenntnisse. Arnold illustriert jeden Grundsatz mit einer Abbildung. Das Buch behandelt die elementarsten Teile des Fachgebiets and beschränkt sich hauptsächlich auf das Cauchy-Problem und das Neumann-Problems für die klassischen Lineargleichungen der mathematischen Physik, insbesondere auf die Laplace-Gleichung und die Wellengleichung, wobei die Wärmeleitungsgleichung und die Korteweg-de-Vries-Gleichung aber ebenfalls diskutiert werden. Die physikalische Intuition wird besonders hervorgehoben. Eine große Anzahl von Problemen ist übers ganze Buch verteilt, und ein ganzer Satz von Aufgaben findet sich am Ende. Was dieses Buch so einzigartig macht, ist das besondere Talent Arnolds, ein Thema aus einer neuen, frischen Perspektive zu beleuchten. Er lüftet gerne den Schleier der Verallgemeinerung, der so viele mathematische Texte umgibt, und enthüllt die im wesentlichen einfachen, intuitiven Ideen, die dem Thema zugrunde liegen. Das kann er besser als jeder andere mathematische Autor.

Meine Zahlen, meine Freunde

Glanzlichter der Zahlentheorie

Author: Paulo Ribenboim

Publisher: Springer-Verlag

ISBN: 3540879579

Category: Mathematics

Page: 391

View: 2523

Paulo Ribenboim behandelt Zahlen in dieser außergewöhnlichen Sammlung von Übersichtsartikeln wie seine persönlichen Freunde. In leichter und allgemein zugänglicher Sprache berichtet er über Primzahlen, Fibonacci-Zahlen (und das Nordpolarmeer!), die klassischen Arbeiten von Gauß über binäre quadratische Formen, Eulers berühmtes primzahlerzeugendes Polynom, irrationale und transzendente Zahlen. Nach dem großen Erfolg von „Die Welt der Primzahlen" ist dies das zweite Buch von Paulo Ribenboim, das in deutscher Sprache erscheint.

G-Functions and Geometry

A Publication of the Max-Planck-Institut für Mathematik, Bonn

Author: Yves André

Publisher: Springer-Verlag

ISBN: 366314108X

Category: Mathematics

Page: 232

View: 8289

Fünf Minuten Mathematik

100 Beiträge der Mathematik-Kolumne der Zeitung DIE WELT

Author: Ehrhard Behrends

Publisher: Springer-Verlag

ISBN: 3658009985

Category: Mathematics

Page: 262

View: 2951

Das Buch enthält einen Querschnitt durch die moderne und alltägliche Mathematik. Die 100 Beiträge sind aus der Kolumne "Fünf Minuten Mathematik" hervorgegangen, in der verschiedene mathematische Gebiete in einer für Laien verständlichen Sprache behandelt wurden. Der Leser findet hier den mathematischen Hintergrund und viele attraktive Fotos zur Veranschaulichung der Mathematik. Für die Neuauflage wurde der Text aktualisiert und ergänzt; anhand von QR-Codes können zu verschiedenen Themen kurze Filme bei Youtube abgerufen werden.