Statistik-Workshop für Programmierer

Author: Allen Downey

Publisher: O'Reilly Germany

ISBN: 3868993428

Category:

Page: 138

View: 8841

Wenn Sie programmieren konnen, beherrschen Sie bereits Techniken, um aus Daten Wissen zu extrahieren. Diese kompakte Einfuhrung in die Statistik zeigt Ihnen, wie Sie rechnergestutzt, anstatt auf mathematischem Weg Datenanalysen mit Python durchfuhren konnen. Praktischer Programmier-Workshop statt grauer Theorie: Das Buch fuhrt Sie anhand eines durchgangigen Fallbeispiels durch eine vollstandige Datenanalyse -- von der Datensammlung uber die Berechnung statistischer Kennwerte und Identifikation von Mustern bis hin zum Testen statistischer Hypothesen. Gleichzeitig werden Sie mit statistischen Verteilungen, den Regeln der Wahrscheinlichkeitsrechnung, Visualisierungsmoglichkeiten und vielen anderen Arbeitstechniken und Konzepten vertraut gemacht. Statistik-Konzepte zum Ausprobieren: Entwickeln Sie uber das Schreiben und Testen von Code ein Verstandnis fur die Grundlagen von Wahrscheinlichkeitsrechnung und Statistik: Uberprufen Sie das Verhalten statistischer Merkmale durch Zufallsexperimente, zum Beispiel indem Sie Stichproben aus unterschiedlichen Verteilungen ziehen. Nutzen Sie Simulationen, um Konzepte zu verstehen, die auf mathematischem Weg nur schwer zuganglich sind. Lernen Sie etwas uber Themen, die in Einfuhrungen ublicherweise nicht vermittelt werden, beispielsweise uber die Bayessche Schatzung. Nutzen Sie Python zur Bereinigung und Aufbereitung von Rohdaten aus nahezu beliebigen Quellen. Beantworten Sie mit den Mitteln der Inferenzstatistik Fragestellungen zu realen Daten.

Machine Learning

A Constraint-Based Approach

Author: Marco Gori

Publisher: Morgan Kaufmann

ISBN: 0081006705

Category: Computers

Page: 580

View: 9090

Machine Learning: A Constraint-Based Approach provides readers with a refreshing look at the basic models and algorithms of machine learning, with an emphasis on current topics of interest that includes neural networks and kernel machines. The book presents the information in a truly unified manner that is based on the notion of learning from environmental constraints. While regarding symbolic knowledge bases as a collection of constraints, the book draws a path towards a deep integration with machine learning that relies on the idea of adopting multivalued logic formalisms, like in fuzzy systems. A special attention is reserved to deep learning, which nicely fits the constrained- based approach followed in this book. This book presents a simpler unified notion of regularization, which is strictly connected with the parsimony principle, and includes many solved exercises that are classified according to the Donald Knuth ranking of difficulty, which essentially consists of a mix of warm-up exercises that lead to deeper research problems. A software simulator is also included. Presents fundamental machine learning concepts, such as neural networks and kernel machines in a unified manner Provides in-depth coverage of unsupervised and semi-supervised learning Includes a software simulator for kernel machines and learning from constraints that also includes exercises to facilitate learning Contains 250 solved examples and exercises chosen particularly for their progression of difficulty from simple to complex

Machine Learning. Eine Analyse des State of the Art

Author: Kevin Donath

Publisher: GRIN Verlag

ISBN: 3668614466

Category: Computers

Page: 51

View: 1038

Machine Learning ist eine mögliche Umsetzung von künstlicher Intelligenz (kurz KI), die in Software für Dinge wie Computer Vision, Spracherkennung, Sprachverarbeitung und Steuerung von Robotern eingesetzt wird. KI ist ein Zweig der Informatik, der sich damit beschäftigt intelligentes Verhalten in Computern zu simulieren. Dieses Konzept wird für Firmen aus allen Wirtschaftszweigen sowohl in internen Prozessen als auch in Produkten immer bedeutender. In dieser Publikation gibt der Autor einen Überblick über den aktuellen Stand des Machine Learning. Sein Fokus liegt dabei auf der Darstellung des aktuellen Standes der Technologien, den Aktivitäten der Key Player und den Anwendungsgebieten.

Machine Learning

An Artificial Intelligence Approach

Author: Yves Kodratoff,Ryszard S. Michalski

Publisher: Elsevier

ISBN: 0080510558

Category: Computers

Page: 825

View: 6449

Machine Learning: An Artificial Intelligence Approach, Volume III presents a sample of machine learning research representative of the period between 1986 and 1989. The book is organized into six parts. Part One introduces some general issues in the field of machine learning. Part Two presents some new developments in the area of empirical learning methods, such as flexible learning concepts, the Protos learning apprentice system, and the WITT system, which implements a form of conceptual clustering. Part Three gives an account of various analytical learning methods and how analytic learning can be applied to various specific problems. Part Four describes efforts to integrate different learning strategies. These include the UNIMEM system, which empirically discovers similarities among examples; and the DISCIPLE multistrategy system, which is capable of learning with imperfect background knowledge. Part Five provides an overview of research in the area of subsymbolic learning methods. Part Six presents two types of formal approaches to machine learning. The first is an improvement over Mitchell's version space method; the second technique deals with the learning problem faced by a robot in an unfamiliar, deterministic, finite-state environment.

Machine Learning - Medien, Infrastrukturen und Technologien der Künstlichen Intelligenz

Author: Christoph Engemann,Andreas Sudmann

Publisher: transcript Verlag

ISBN: 3839435307

Category: Social Science

Page: 392

View: 8431

Nicht weniger als von einer Revolution ist gegenwärtig die Rede. Neuere Verfahren der Künstlichen Intelligenz greifen in sämtliche Bereiche des sozialen und kulturellen Lebens ein: Maschinen lernen Bilder und Sprache zu erkennen, beherrschen die autonome Steuerung von Fahrzeugen ebenso wie Finanzinvestments und medizinische Diagnostik. Im digitalen Wandel ist Lernen damit kein Privileg des Menschen mehr. Vielmehr verschieben sich mit maschinellen Lernverfahren die Relationen zwischen Erkenntnismöglichkeiten, technischen Umwelten und humanen Akteuren. Dieser Band vermittelt erstmals für den deutschsprachigen Raum einen Überblick über die medialen, infrastrukturellen und historischen Voraussetzungen des maschinellen Lernens.

Deep Learning. Das umfassende Handbuch

Grundlagen, aktuelle Verfahren und Algorithmen, neue Forschungsansätze

Author: Ian Goodfellow,Yoshua Bengio,Aaron Courville

Publisher: MITP-Verlags GmbH & Co. KG

ISBN: 3958457010

Category: Computers

Page: 912

View: 824

• Mathematische Grundlagen für Machine und Deep Learning • Umfassende Behandlung zeitgemäßer Verfahren: tiefe Feedforward-Netze, Regularisierung, Performance-Optimierung sowie CNNs, Rekurrente und Rekursive Neuronale Netze • Zukunftsweisende Deep-Learning-Ansätze sowie von Ian Goodfellow neu entwickelte Konzepte wie Generative Adversarial Networks Deep Learning ist ein Teilbereich des Machine Learnings und versetzt Computer in die Lage, aus Erfahrungen zu lernen. Dieses Buch behandelt umfassend alle Aspekte, die für den Einsatz und die Anwendung von Deep Learning eine Rolle spielen: In Teil I erläutern die Autoren die mathematischen Grundlagen für Künstliche Intelligenz, Neuronale Netze, Machine Learning und Deep Learning. In Teil II werden die aktuellen in der Praxis genutzten Verfahren und Algorithmen behandelt. In Teil III geben die Autoren Einblick in aktuelle Forschungsansätze und zeigen neue zukunftsweisende Verfahren auf. Dieses Buch richtet sich an Studenten und alle, die sich in der Forschung mit Deep Learning beschäftigen sowie an Softwareentwickler und Informatiker, die Deep Learning für eigene Produkte oder Plattformen einsetzen möchten. Dabei werden Grundkenntnisse in Mathematik, Informatik und Programmierung vorausgesetzt.

Elements of Machine Learning

Author: Pat Langley

Publisher: Morgan Kaufmann

ISBN: 9781558603011

Category: Computers

Page: 419

View: 2167

Machine learning is the computational study of algorithms that improve performance based on experience, and this book covers the basic issues of artificial intelligence. Individual sections introduce the basic concepts and problems in machine learning, describe algorithms, discuss adaptions of the learning methods to more complex problem-solving tasks and much more.

Machine Learning

The New AI

Author: Ethem Alpaydin

Publisher: MIT Press

ISBN: 0262529513

Category: Computers

Page: 224

View: 3508

A concise overview of machine learning -- computer programs that learn from data -- which underlies applications that include recommendation systems, face recognition, and driverless cars.

Machine Learning

A Guide to Current Research

Author: Tom M. Mitchell,Jaime G. Carbonell,Ryszard S. Michalski

Publisher: Springer Science & Business Media

ISBN: 9780898382143

Category: Computers

Page: 429

View: 4127

One of the currently most active research areas within Artificial Intelligence is the field of Machine Learning. which involves the study and development of computational models of learning processes. A major goal of research in this field is to build computers capable of improving their performance with practice and of acquiring knowledge on their own. The intent of this book is to provide a snapshot of this field through a broad. representative set of easily assimilated short papers. As such. this book is intended to complement the two volumes of Machine Learning: An Artificial Intelligence Approach (Morgan-Kaufman Publishers). which provide a smaller number of in-depth research papers. Each of the 77 papers in the present book summarizes a current research effort. and provides references to longer expositions appearing elsewhere. These papers cover a broad range of topics. including research on analogy. conceptual clustering. explanation-based generalization. incremental learning. inductive inference. learning apprentice systems. machine discovery. theoretical models of learning. and applications of machine learning methods. A subject index IS provided to assist in locating research related to specific topics. The majority of these papers were collected from the participants at the Third International Machine Learning Workshop. held June 24-26. 1985 at Skytop Lodge. Skytop. Pennsylvania. While the list of research projects covered is not exhaustive. we believe that it provides a representative sampling of the best ongoing work in the field. and a unique perspective on where the field is and where it is headed.

Introduction to Machine Learning

Author: Ethem Alpaydin

Publisher: MIT Press

ISBN: 0262028182

Category: Computers

Page: 640

View: 3451

The goal of machine learning is to program computers to use example data or past experience to solve a given problem. Many successful applications of machine learning exist already, including systems that analyze past sales data to predict customer behavior, optimize robot behavior so that a task can be completed using minimum resources, and extract knowledge from bioinformatics data. Introduction to Machine Learning is a comprehensive textbook on the subject, covering a broad array of topics not usually included in introductory machine learning texts. Subjects include supervised learning; Bayesian decision theory; parametric, semi-parametric, and nonparametric methods; multivariate analysis; hidden Markov models; reinforcement learning; kernel machines; graphical models; Bayesian estimation; and statistical testing.Machine learning is rapidly becoming a skill that computer science students must master before graduation. The third edition of Introduction to Machine Learning reflects this shift, with added support for beginners, including selected solutions for exercises and additional example data sets (with code available online). Other substantial changes include discussions of outlier detection; ranking algorithms for perceptrons and support vector machines; matrix decomposition and spectral methods; distance estimation; new kernel algorithms; deep learning in multilayered perceptrons; and the nonparametric approach to Bayesian methods. All learning algorithms are explained so that students can easily move from the equations in the book to a computer program. The book can be used by both advanced undergraduates and graduate students. It will also be of interest to professionals who are concerned with the application of machine learning methods.

Scala for Machine Learning

Data processing, ML algorithms, smart analytics, and more

Author: Patrick R. Nicolas

Publisher: Packt Publishing Ltd

ISBN: 178712620X

Category: Computers

Page: 740

View: 4109

Leverage Scala and Machine Learning to study and construct systems that can learn from data About This Book Explore a broad variety of data processing, machine learning, and genetic algorithms through diagrams, mathematical formulation, and updated source code in Scala Take your expertise in Scala programming to the next level by creating and customizing AI applications Experiment with different techniques and evaluate their benefits and limitations using real-world applications in a tutorial style Who This Book Is For If you're a data scientist or a data analyst with a fundamental knowledge of Scala who wants to learn and implement various Machine learning techniques, this book is for you. All you need is a good understanding of the Scala programming language, a basic knowledge of statistics, a keen interest in Big Data processing, and this book! What You Will Learn Build dynamic workflows for scientific computing Leverage open source libraries to extract patterns from time series Write your own classification, clustering, or evolutionary algorithm Perform relative performance tuning and evaluation of Spark Master probabilistic models for sequential data Experiment with advanced techniques such as regularization and kernelization Dive into neural networks and some deep learning architecture Apply some basic multiarm-bandit algorithms Solve big data problems with Scala parallel collections, Akka actors, and Apache Spark clusters Apply key learning strategies to a technical analysis of financial markets In Detail The discovery of information through data clustering and classification is becoming a key differentiator for competitive organizations. Machine learning applications are everywhere, from self-driving cars, engineering design, logistics, manufacturing, and trading strategies, to detection of genetic anomalies. The book is your one stop guide that introduces you to the functional capabilities of the Scala programming language that are critical to the creation of machine learning algorithms such as dependency injection and implicits. You start by learning data preprocessing and filtering techniques. Following this, you'll move on to unsupervised learning techniques such as clustering and dimension reduction, followed by probabilistic graphical models such as Naive Bayes, hidden Markov models and Monte Carlo inference. Further, it covers the discriminative algorithms such as linear, logistic regression with regularization, kernelization, support vector machines, neural networks, and deep learning. You'll move on to evolutionary computing, multibandit algorithms, and reinforcement learning. Finally, the book includes a comprehensive overview of parallel computing in Scala and Akka followed by a description of Apache Spark and its ML library. With updated codes based on the latest version of Scala and comprehensive examples, this book will ensure that you have more than just a solid fundamental knowledge in machine learning with Scala. Style and approach This book is designed as a tutorial with hands-on exercises using technical analysis of financial markets and corporate data. The approach of each chapter is such that it allows you to understand key concepts easily.

Genetic Algorithms for Machine Learning

Author: John J. Grefenstette

Publisher: Springer Science & Business Media

ISBN: 9780792394075

Category: Computers

Page: 165

View: 8453

The articles presented here were selected from preliminary versions presented at the International Conference on Genetic Algorithms in June 1991, as well as at a special Workshop on Genetic Algorithms for Machine Learning at the same Conference. Genetic algorithms are general-purpose search algorithms that use principles inspired by natural population genetics to evolve solutions to problems. The basic idea is to maintain a population of knowledge structure that represent candidate solutions to the problem of interest. The population evolves over time through a process of competition (i.e. survival of the fittest) and controlled variation (i.e. recombination and mutation). Genetic Algorithms for Machine Learning contains articles on three topics that have not been the focus of many previous articles on GAs, namely concept learning from examples, reinforcement learning for control, and theoretical analysis of GAs. It is hoped that this sample will serve to broaden the acquaintance of the general machine learning community with the major areas of work on GAs. The articles in this book address a number of central issues in applying GAs to machine learning problems. For example, the choice of appropriate representation and the corresponding set of genetic learning operators is an important set of decisions facing a user of a genetic algorithm. The study of genetic algorithms is proceeding at a robust pace. If experimental progress and theoretical understanding continue to evolve as expected, genetic algorithms will continue to provide a distinctive approach to machine learning. Genetic Algorithms for Machine Learning is an edited volume of original research made up of invited contributions by leading researchers.

A Compendium of Machine Learning

Author: Garry Briscoe,Terry Caelli

Publisher: Intellect Books

ISBN: 9781567501797

Category: Computers

Page: 353

View: 2341

Machine learning is a relatively new branch of artificial intelligence. The field has undergone a significant period of growth in the 1990s, with many new areas of research and development being explored.

Deep Learning

Author: Ian Goodfellow,Yoshua Bengio,Aaron Courville

Publisher: MIT Press

ISBN: 0262035618

Category: Computers

Page: 800

View: 2765

An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives.

Machine learning

proceedings of the Twelfth International Conference on Machine Learning, Tahoe City, California, July 9-12, 1995

Author: Armand Prieditis

Publisher: Morgan Kaufmann

ISBN: 9781558603776

Category: Computers

Page: 591

View: 7067

Pro Machine Learning Algorithms

A Hands-On Approach to Implementing Algorithms in Python and R

Author: V Kishore Ayyadevara

Publisher: Apress

ISBN: 1484235649

Category: Computers

Page: 372

View: 8553

Bridge the gap between a high-level understanding of how an algorithm works and knowing the nuts and bolts to tune your models better. This book will give you the confidence and skills when developing all the major machine learning models. In Pro Machine Learning Algorithms, you will first develop the algorithm in Excel so that you get a practical understanding of all the levers that can be tuned in a model, before implementing the models in Python/R. You will cover all the major algorithms: supervised and unsupervised learning, which include linear/logistic regression; k-means clustering; PCA; recommender system; decision tree; random forest; GBM; and neural networks. You will also be exposed to the latest in deep learning through CNNs, RNNs, and word2vec for text mining. You will be learning not only the algorithms, but also the concepts of feature engineering to maximize the performance of a model. You will see the theory along with case studies, such as sentiment classification, fraud detection, recommender systems, and image recognition, so that you get the best of both theory and practice for the vast majority of the machine learning algorithms used in industry. Along with learning the algorithms, you will also be exposed to running machine-learning models on all the major cloud service providers. You are expected to have minimal knowledge of statistics/software programming and by the end of this book you should be able to work on a machine learning project with confidence. What You Will Learn Get an in-depth understanding of all the major machine learning and deep learning algorithms Fully appreciate the pitfalls to avoid while building models Implement machine learning algorithms in the cloud Follow a hands-on approach through case studies for each algorithm Gain the tricks of ensemble learning to build more accurate models Discover the basics of programming in R/Python and the Keras framework for deep learning Who This Book Is For Business analysts/ IT professionals who want to transition into data science roles. Data scientists who want to solidify their knowledge in machine learning.

MATLAB Deep Learning

With Machine Learning, Neural Networks and Artificial Intelligence

Author: Phil Kim

Publisher: Apress

ISBN: 1484228456

Category: Computers

Page: 151

View: 3917

Get started with MATLAB for deep learning and AI with this in-depth primer. In this book, you start with machine learning fundamentals, then move on to neural networks, deep learning, and then convolutional neural networks. In a blend of fundamentals and applications, MATLAB Deep Learning employs MATLAB as the underlying programming language and tool for the examples and case studies in this book. With this book, you'll be able to tackle some of today's real world big data, smart bots, and other complex data problems. You’ll see how deep learning is a complex and more intelligent aspect of machine learning for modern smart data analysis and usage. What You'll Learn Use MATLAB for deep learning Discover neural networks and multi-layer neural networks Work with convolution and pooling layers Build a MNIST example with these layers Who This Book Is For Those who want to learn deep learning using MATLAB. Some MATLAB experience may be useful.

Python Machine Learning

Author: Sebastian Raschka

Publisher: Packt Publishing Ltd

ISBN: 1783555149

Category: Computers

Page: 454

View: 3915

Unlock deeper insights into Machine Leaning with this vital guide to cutting-edge predictive analytics About This Book Leverage Python's most powerful open-source libraries for deep learning, data wrangling, and data visualization Learn effective strategies and best practices to improve and optimize machine learning systems and algorithms Ask – and answer – tough questions of your data with robust statistical models, built for a range of datasets Who This Book Is For If you want to find out how to use Python to start answering critical questions of your data, pick up Python Machine Learning – whether you want to get started from scratch or want to extend your data science knowledge, this is an essential and unmissable resource. What You Will Learn Explore how to use different machine learning models to ask different questions of your data Learn how to build neural networks using Keras and Theano Find out how to write clean and elegant Python code that will optimize the strength of your algorithms Discover how to embed your machine learning model in a web application for increased accessibility Predict continuous target outcomes using regression analysis Uncover hidden patterns and structures in data with clustering Organize data using effective pre-processing techniques Get to grips with sentiment analysis to delve deeper into textual and social media data In Detail Machine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. Python can help you deliver key insights into your data – its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success. Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world's leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Keras, and featuring guidance and tips on everything from sentiment analysis to neural networks, you'll soon be able to answer some of the most important questions facing you and your organization. Style and approach Python Machine Learning connects the fundamental theoretical principles behind machine learning to their practical application in a way that focuses you on asking and answering the right questions. It walks you through the key elements of Python and its powerful machine learning libraries, while demonstrating how to get to grips with a range of statistical models.

The Computational Complexity of Machine Learning

Author: Michael J. Kearns

Publisher: MIT Press

ISBN: 9780262111522

Category: Computers

Page: 165

View: 3912

We also give algorithms for learning powerful concept classes under the uniform distribution, and give equivalences between natural models of efficient learnability. This thesis also includes detailed definitions and motivation for the distribution-free model, a chapter discussing past research in this model and related models, and a short list of important open problems."