Mathematical Logic

Author: H.-D. Ebbinghaus,J. Flum,Wolfgang Thomas

Publisher: Springer Science & Business Media

ISBN: 1475723555

Category: Mathematics

Page: 291

View: 9738

This introduction to first-order logic clearly works out the role of first-order logic in the foundations of mathematics, particularly the two basic questions of the range of the axiomatic method and of theorem-proving by machines. It covers several advanced topics not commonly treated in introductory texts, such as Fraïssé's characterization of elementary equivalence, Lindström's theorem on the maximality of first-order logic, and the fundamentals of logic programming.

Einführung in die mathematische Logik

Author: Heinz-Dieter Ebbinghaus,Jörg Flum,Wolfgang Thomas

Publisher: Springer Spektrum

ISBN: 9783662580288

Category: Mathematics

Page: 367

View: 3777

Was ist ein mathematischer Beweis? Wie lassen sich Beweise rechtfertigen? Gibt es Grenzen der Beweisbarkeit? Ist die Mathematik widerspruchsfrei? Kann man das Auffinden mathematischer Beweise Computern übertragen? Erst im 20. Jahrhundert ist es der mathematischen Logik gelungen, weitreichende Antworten auf diese Fragen zu geben: Im vorliegenden Werk werden die Ergebnisse systematisch zusammengestellt; im Mittelpunkt steht dabei die Logik erster Stufe. Die Lektüre setzt – außer einer gewissen Vertrautheit mit der mathematischen Denkweise – keine spezifischen Kenntnisse voraus. In der vorliegenden 5. Auflage finden sich erstmals Lösungsskizzen zu den Aufgaben.

Mathematical logic

Author: Heinz-Dieter Ebbinghaus,Jörg Flum,Wolfgang Thomas

Publisher: Springer

ISBN: 9780387908953

Category: Mathematics

Page: 216

View: 2961

This careful, self-contained introduction to first-order logic includes an exposition of certain topics not usually found in introductory texts (such as Trachtenbrot's undecidability theorem, Fraisse's characterization of elementary equivalence, and Lindstr m's theorem on the maximality of first-order logic). The presentation is detailed and systematic without being long-winded or tedious. The role of first-order logic in the foundations of mathematics is worked out clearly, particularly the two basic questions of the range of the axiomatic method and of theorem-proving by machines. Many exercises accompany the text.

Introduction to Model Theory

Author: Philipp Rothmaler

Publisher: CRC Press

ISBN: 9789056993139

Category: Mathematics

Page: 324

View: 3133

Model theory investigates mathematical structures by means of formal languages. So-called first-order languages have proved particularly useful in this respect. This text introduces the model theory of first-order logic, avoiding syntactical issues not too relevant to model theory. In this spirit, the compactness theorem is proved via the algebraically useful ultrsproduct technique (rather than via the completeness theorem of first-order logic). This leads fairly quickly to algebraic applications, like Malcev's local theorems of group theory and, after a little more preparation, to Hilbert's Nullstellensatz of field theory. Steinitz dimension theory for field extensions is obtained as a special case of a much more general model-theoretic treatment of strongly minimal theories. There is a final chapter on the models of the first-order theory of the integers as an abelian group. Both these topics appear here for the first time in a textbook at the introductory level, and are used to give hints to further reading and to recent developments in the field, such as stability (or classification) theory.

A Course in Mathematical Logic

Author: I͡U. I. Manin,Jurij I. Manin,Yu I. Manin,︠I︡U. I. Manin,I︠U︡riĭ Ivanovich Manin,Ûrij Ivanovič Manin

Publisher: Springer Science & Business Media

ISBN: 9780387902432

Category: Mathematics

Page: 286

View: 8243

This book is a text of mathematical logic on a sophisticated level, presenting the reader with several of the most significant discoveries of the last 10 to 15 years, including the independence of the continuum hypothesis, the Diophantine nature of enumerable sets and the impossibility of finding an algorithmic solution for certain problems. The book contains the first textbook presentation of Matijasevic's result. The central notions are provability and computability; the emphasis of the presentation is on aspects of the theory which are of interest to the working mathematician. Many of the approaches and topics covered are not standard parts of logic courses; they include a discussion of the logic of quantum mechanics, Goedel's constructible sets as a sub-class of von Neumann's universe, the Kolmogorov theory of complexity. Feferman's theorem on Goedel formulas as axioms and Highman's theorem on groups defined by enumerable sets of generators and relations. A number of informal digressions concerned with psychology, linguistics, and common sense logic should interest students of the philosophy of science or the humanities.

A First Course in Mathematical Logic and Set Theory

Author: Michael L. O'Leary

Publisher: John Wiley & Sons

ISBN: 0470905883

Category: Mathematics

Page: 464

View: 4715

Rather than teach mathematics and the structure of proofssimultaneously, this book first introduces logic as the foundationof proofs and then demonstrates how logic applies to mathematicaltopics. This method ensures that readers gain a firmunderstanding of how logic interacts with mathematics and empowersthem to solve more complex problems. The study of logic andapplications is used throughout to prepare readers for further workin proof writing. Readers are first introduced tomathematical proof-writing, and then the book provides anoverview of symbolic logic that includes two-column logicproofs. Readers are then transitioned to set theory andinduction, and applications of number theory, relations, functions,groups, and topology are provided to further aid incomprehension. Topical coverage includes propositional logic,predicate logic, set theory, mathematical induction, number theory,relations, functions, group theory, and topology.

Mathematical Logic

Foundations for Information Science

Author: Wei Li

Publisher: Springer

ISBN: 3034808623

Category: Mathematics

Page: 301

View: 957

Mathematical logic is a branch of mathematics that takes axiom systems and mathematical proofs as its objects of study. This book shows how it can also provide a foundation for the development of information science and technology. The first five chapters systematically present the core topics of classical mathematical logic, including the syntax and models of first-order languages, formal inference systems, computability and representability, and Gödel’s theorems. The last five chapters present extensions and developments of classical mathematical logic, particularly the concepts of version sequences of formal theories and their limits, the system of revision calculus, proschemes (formal descriptions of proof methods and strategies) and their properties, and the theory of inductive inference. All of these themes contribute to a formal theory of axiomatization and its application to the process of developing information technology and scientific theories. The book also describes the paradigm of three kinds of language environments for theories and it presents the basic properties required of a meta-language environment. Finally, the book brings these themes together by describing a workflow for scientific research in the information era in which formal methods, interactive software and human invention are all used to their advantage. The second edition of the book includes major revisions on the proof of the completeness theorem of the Gentzen system and new contents on the logic of scientific discovery, R-calculus without cut, and the operational semantics of program debugging. This book represents a valuable reference for graduate and undergraduate students and researchers in mathematics, information science and technology, and other relevant areas of natural sciences. Its first five chapters serve as an undergraduate text in mathematical logic and the last five chapters are addressed to graduate students in relevant disciplines.

Naive Mengenlehre

Author: Paul R. Halmos

Publisher: Vandenhoeck & Ruprecht

ISBN: 9783525405277

Category: Arithmetic

Page: 132

View: 7562

A Course on Mathematical Logic

Author: Shashi Mohan Srivastava

Publisher: Springer Science & Business Media

ISBN: 1461457467

Category: Mathematics

Page: 198

View: 6536

This is a short, modern, and motivated introduction to mathematical logic for upper undergraduate and beginning graduate students in mathematics and computer science. Any mathematician who is interested in getting acquainted with logic and would like to learn Gödel’s incompleteness theorems should find this book particularly useful. The treatment is thoroughly mathematical and prepares students to branch out in several areas of mathematics related to foundations and computability, such as logic, axiomatic set theory, model theory, recursion theory, and computability. In this new edition, many small and large changes have been made throughout the text. The main purpose of this new edition is to provide a healthy first introduction to model theory, which is a very important branch of logic. Topics in the new chapter include ultraproduct of models, elimination of quantifiers, types, applications of types to model theory, and applications to algebra, number theory and geometry. Some proofs, such as the proof of the very important completeness theorem, have been completely rewritten in a more clear and concise manner. The new edition also introduces new topics, such as the notion of elementary class of structures, elementary diagrams, partial elementary maps, homogeneous structures, definability, and many more.

Einführung in die Modelltheorie


Author: Philipp Rothmaler

Publisher: Spektrum Akademischer Verlag

ISBN: 9783860254615

Category: Model theory

Page: 331

View: 4405

Mathematical Logic

Author: Ian Chiswell,Wilfrid Hodges

Publisher: OUP Oxford

ISBN: 9780198571001

Category: Mathematics

Page: 258

View: 8126

Assuming no previous study in logic, this informal yet rigorous text covers the material of a standard undergraduate first course in mathematical logic, using natural deduction and leading up to the completeness theorem for first-order logic. At each stage of the text, the reader is given an intuition based on standard mathematical practice, which is subsequently developed with clean formal mathematics. Alongside the practical examples, readers learn what can and can't be calculated; for example the correctness of a derivation proving a given sequent can be tested mechanically, but there is no general mechanical test for the existence of a derivation proving the given sequent. The undecidability results are proved rigorously in an optional final chapter, assuming Matiyasevich's theorem characterising the computably enumerable relations. Rigorous proofs of the adequacy and completeness proofs of the relevant logics are provided, with careful attention to the languages involved. Optional sections discuss the classification of mathematical structures by first-order theories; the required theory of cardinality is developed from scratch. Throughout the book there are notes on historical aspects of the material, and connections with linguistics and computer science, and the discussion of syntax and semantics is influenced by modern linguistic approaches. Two basic themes in recent cognitive science studies of actual human reasoning are also introduced. Including extensive exercises and selected solutions, this text is ideal for students in Logic, Mathematics, Philosophy, and Computer Science.

A Concise Introduction to Mathematical Logic

Author: Wolfgang Rautenberg

Publisher: Springer Science & Business Media

ISBN: 0387342419

Category: Mathematics

Page: 256

View: 3856

While there are already several well known textbooks on mathematical logic this book is unique in treating the material in a concise and streamlined fashion. This allows many important topics to be covered in a one semester course. Although the book is intended for use as a graduate text the first three chapters can be understood by undergraduates interested in mathematical logic. The remaining chapters contain material on logic programming for computer scientists, model theory, recursion theory, Godel’s Incompleteness Theorems, and applications of mathematical logic. Philosophical and foundational problems of mathematics are discussed throughout the text.

Mathematical Logic

Author: Stephen Cole Kleene

Publisher: Courier Corporation

ISBN: 0486317072

Category: Mathematics

Page: 416

View: 5553

Contents include an elementary but thorough overview of mathematical logic of 1st order; formal number theory; surveys of the work by Church, Turing, and others, including Gödel's completeness theorem, Gentzen's theorem, more.

Introduction to Mathematical Logic

Set Theory Computable Functions Model Theory

Author: Jerome Malitz

Publisher: Springer Science & Business Media

ISBN: 1461394414

Category: Mathematics

Page: 198

View: 5638

This book is intended as an undergraduate senior level or beginning graduate level text for mathematical logic. There are virtually no prere quisites, although a familiarity with notions encountered in a beginning course in abstract algebra such as groups, rings, and fields will be useful in providing some motivation for the topics in Part III. An attempt has been made to develop the beginning of each part slowly and then to gradually quicken the pace and the complexity of the material. Each part ends with a brief introduction to selected topics of current interest. The text is divided into three parts: one dealing with set theory, another with computable function theory, and the last with model theory. Part III relies heavily on the notation, concepts and results discussed in Part I and to some extent on Part II. Parts I and II are independent of each other, and each provides enough material for a one semester course. The exercises cover a wide range of difficulty with an emphasis on more routine problems in the earlier sections of each part in order to familiarize the reader with the new notions and methods. The more difficult exercises are accompanied by hints. In some cases significant theorems are devel oped step by step with hints in the problems. Such theorems are not used later in the sequence.

Logic for Mathematicians

Author: A. G. Hamilton

Publisher: Cambridge University Press

ISBN: 9780521368650

Category: Mathematics

Page: 228

View: 3338

This is an introductory textbook which is designed to be useful not only to intending logicians but also to mathematicians in general.

Finite Model Theory

Author: Heinz-Dieter Ebbinghaus,Jörg Flum

Publisher: Springer Science & Business Media

ISBN: 3540287884

Category: Mathematics

Page: 360

View: 4034

This is a thoroughly revised and enlarged second edition that presents the main results of descriptive complexity theory, that is, the connections between axiomatizability of classes of finite structures and their complexity with respect to time and space bounds. The logics that are important in this context include fixed-point logics, transitive closure logics, and also certain infinitary languages; their model theory is studied in full detail. The book is written in such a way that the respective parts on model theory and descriptive complexity theory may be read independently.

A Tour Through Mathematical Logic

Author: Robert S. Wolf

Publisher: MAA

ISBN: 9780883850367

Category: Mathematics

Page: 397

View: 1065

The foundations of mathematics include mathematical logic, set theory, recursion theory, model theory, and Gdel's incompleteness theorems. Professor Wolf provides here a guide that any interested reader with some post-calculus experience in mathematics can read, enjoy, and learn from. It could also serve as a textbook for courses in the foundations of mathematics, at the undergraduate or graduate level. The book is deliberately less structured and more user-friendly than standard texts on foundations, so will also be attractive to those outside the classroom environment wanting to learn about the subject.

Formal Languages, Automata and Numeration Systems 1

Introduction to Combinatorics on Words

Author: Michel Rigo

Publisher: John Wiley & Sons

ISBN: 1119008220

Category: Computers

Page: 338

View: 4980

Formal Languages, Automaton and Numeration Systems presents readers with a review of research related to formal language theory, combinatorics on words or numeration systems, such as Words, DLT (Developments in Language Theory), ICALP, MFCS (Mathematical Foundation of Computer Science), Mons Theoretical Computer Science Days, Numeration, CANT (Combinatorics, Automata and Number Theory). Combinatorics on words deals with problems that can be stated in a non-commutative monoid, such as subword complexity of finite or infinite words, construction and properties of infinite words, unavoidable regularities or patterns. When considering some numeration systems, any integer can be represented as a finite word over an alphabet of digits. This simple observation leads to the study of the relationship between the arithmetical properties of the integers and the syntactical properties of the corresponding representations. One of the most profound results in this direction is given by the celebrated theorem by Cobham. Surprisingly, a recent extension of this result to complex numbers led to the famous Four Exponentials Conjecture. This is just one example of the fruitful relationship between formal language theory (including the theory of automata) and number theory.

Satan, Cantor und die Unendlichkeit

und 200 weitere verblüffende Tüfteleien

Author: Raymond Smullyan

Publisher: Springer-Verlag

ISBN: 3034862318

Category: Juvenile Nonfiction

Page: 232

View: 899

Mathematical Logic

Author: George Tourlakis

Publisher: John Wiley & Sons

ISBN: 1118030699

Category: Mathematics

Page: 294

View: 2317

A comprehensive and user-friendly guide to the use of logic inmathematical reasoning Mathematical Logic presents a comprehensive introductionto formal methods of logic and their use as a reliable tool fordeductive reasoning. With its user-friendly approach, this booksuccessfully equips readers with the key concepts and methods forformulating valid mathematical arguments that can be used touncover truths across diverse areas of study such as mathematics,computer science, and philosophy. The book develops the logical tools for writing proofs byguiding readers through both the established "Hilbert" style ofproof writing, as well as the "equational" style that is emergingin computer science and engineering applications. Chapters havebeen organized into the two topical areas of Boolean logic andpredicate logic. Techniques situated outside formal logic areapplied to illustrate and demonstrate significant facts regardingthe power and limitations of logic, such as: Logic can certify truths and only truths. Logic can certify all absolute truths (completeness theorems ofPost and Gödel). Logic cannot certify all "conditional" truths, such as thosethat are specific to the Peano arithmetic. Therefore, logic hassome serious limitations, as shown through Gödel'sincompleteness theorem. Numerous examples and problem sets are provided throughout thetext, further facilitating readers' understanding of thecapabilities of logic to discover mathematical truths. In addition,an extensive appendix introduces Tarski semantics and proceeds withdetailed proofs of completeness and first incompleteness theorems,while also providing a self-contained introduction to the theory ofcomputability. With its thorough scope of coverage and accessible style,Mathematical Logic is an ideal book for courses inmathematics, computer science, and philosophy at theupper-undergraduate and graduate levels. It is also a valuablereference for researchers and practitioners who wish to learn howto use logic in their everyday work.