Methods of Solving Sequence and Series Problems

Author: Ellina Grigorieva

Publisher: Birkhäuser

ISBN: 3319456865

Category: Mathematics

Page: 281

View: 2159

This book aims to dispel the mystery and fear experienced by students surrounding sequences, series, convergence, and their applications. The author, an accomplished female mathematician, achieves this by taking a problem solving approach, starting with fascinating problems and solving them step by step with clear explanations and illuminating diagrams. The reader will find the problems interesting, unusual, and fun, yet solved with the rigor expected in a competition. Some problems are taken directly from mathematics competitions, with the name and year of the exam provided for reference. Proof techniques are emphasized, with a variety of methods presented. The text aims to expand the mind of the reader by often presenting multiple ways to attack the same problem, as well as drawing connections with different fields of mathematics. Intuitive and visual arguments are presented alongside technical proofs to provide a well-rounded methodology. With nearly 300 problems including hints, answers, and solutions, Methods of Solving Sequences and Series Problems is an ideal resource for those learning calculus, preparing for mathematics competitions, or just looking for a worthwhile challenge. It can also be used by faculty who are looking for interesting and insightful problems that are not commonly found in other textbooks.

Methods of Solving Sequence and Series Problems

Author: Ellina Grigorieva

Publisher: Birkhäuser

ISBN: 9783319456850

Category: Mathematics

Page: 281

View: 8535

This book aims to dispel the mystery and fear experienced by students surrounding sequences, series, convergence, and their applications. The author, an accomplished female mathematician, achieves this by taking a problem solving approach, starting with fascinating problems and solving them step by step with clear explanations and illuminating diagrams. The reader will find the problems interesting, unusual, and fun, yet solved with the rigor expected in a competition. Some problems are taken directly from mathematics competitions, with the name and year of the exam provided for reference. Proof techniques are emphasized, with a variety of methods presented. The text aims to expand the mind of the reader by often presenting multiple ways to attack the same problem, as well as drawing connections with different fields of mathematics. Intuitive and visual arguments are presented alongside technical proofs to provide a well-rounded methodology. With nearly 300 problems including hints, answers, and solutions, Methods of Solving Sequences and Series Problems is an ideal resource for those learning calculus, preparing for mathematics competitions, or just looking for a worthwhile challenge. It can also be used by faculty who are looking for interesting and insightful problems that are not commonly found in other textbooks.

Methods of Solving Complex Geometry Problems

Author: Ellina Grigorieva

Publisher: Springer Science & Business Media

ISBN: 331900705X

Category: Mathematics

Page: 234

View: 4891

This book is a unique collection of challenging geometry problems and detailed solutions that will build students’ confidence in mathematics. By proposing several methods to approach each problem and emphasizing geometry’s connections with different fields of mathematics, Methods of Solving Complex Geometry Problems serves as a bridge to more advanced problem solving. Written by an accomplished female mathematician who struggled with geometry as a child, it does not intimidate, but instead fosters the reader’s ability to solve math problems through the direct application of theorems. Containing over 160 complex problems with hints and detailed solutions, Methods of Solving Complex Geometry Problems can be used as a self-study guide for mathematics competitions and for improving problem-solving skills in courses on plane geometry or the history of mathematics. It contains important and sometimes overlooked topics on triangles, quadrilaterals, and circles such as the Menelaus-Ceva theorem, Simson’s line, Heron’s formula, and the theorems of the three altitudes and medians. It can also be used by professors as a resource to stimulate the abstract thinking required to transcend the tedious and routine, bringing forth the original thought of which their students are capable. Methods of Solving Complex Geometry Problems will interest high school and college students needing to prepare for exams and competitions, as well as anyone who enjoys an intellectual challenge and has a special love of geometry. It will also appeal to instructors of geometry, history of mathematics, and math education courses.

Real Infinite Series

Author: Daniel D. Bonar,Michael J. Khoury, Jr.,Michael Khoury

Publisher: MAA

ISBN: 9780883857458

Category: Mathematics

Page: 264

View: 8578

An introductory treatment of infinite series of real numbers, from basic definitions and tests to advanced results.

Problems in Real Analysis

Advanced Calculus on the Real Axis

Author: Teodora-Liliana Radulescu,Vicentiu D. Radulescu,Titu Andreescu

Publisher: Springer Science & Business Media

ISBN: 0387773797

Category: Mathematics

Page: 452

View: 2754

Problems in Real Analysis: Advanced Calculus on the Real Axis features a comprehensive collection of challenging problems in mathematical analysis that aim to promote creative, non-standard techniques for solving problems. This self-contained text offers a host of new mathematical tools and strategies which develop a connection between analysis and other mathematical disciplines, such as physics and engineering. A broad view of mathematics is presented throughout; the text is excellent for the classroom or self-study. It is intended for undergraduate and graduate students in mathematics, as well as for researchers engaged in the interplay between applied analysis, mathematical physics, and numerical analysis.

Numbers, Sequences and Series

Author: Keith E. Hirst

Publisher: Butterworth-Heinemann

ISBN: 0340610433

Category: Mathematics

Page: 198

View: 4805

Concerned with the logical foundations of number systems from integers to complex numbers.

Equations and Inequalities

Elementary Problems and Theorems in Algebra and Number Theory

Author: Jiri Herman,Radan Kucera,Jaromir Simsa

Publisher: Springer Science & Business Media

ISBN: 1461212707

Category: Mathematics

Page: 344

View: 1529

A look at solving problems in three areas of classical elementary mathematics: equations and systems of equations of various kinds, algebraic inequalities, and elementary number theory, in particular divisibility and diophantine equations. In each topic, brief theoretical discussions are followed by carefully worked out examples of increasing difficulty, and by exercises which range from routine to rather more challenging problems. While it emphasizes some methods that are not usually covered in beginning university courses, the book nevertheless teaches techniques and skills which are useful beyond the specific topics covered here. With approximately 330 examples and 760 exercises.

Problem-Solving Methods in Combinatorics

An Approach to Olympiad Problems

Author: Pablo Soberón

Publisher: Springer Science & Business Media

ISBN: 3034805977

Category: Mathematics

Page: 174

View: 2782

Every year there is at least one combinatorics problem in each of the major international mathematical olympiads. These problems can only be solved with a very high level of wit and creativity. This book explains all the problem-solving techniques necessary to tackle these problems, with clear examples from recent contests. It also includes a large problem section for each topic, including hints and full solutions so that the reader can practice the material covered in the book.​ The material will be useful not only to participants in the olympiads and their coaches but also in university courses on combinatorics.

Methods of Solving Nonstandard Problems

Author: Ellina Grigorieva

Publisher: Birkhäuser

ISBN: 3319198874

Category: Mathematics

Page: 327

View: 6920

This book, written by an accomplished female mathematician, is the second to explore nonstandard mathematical problems – those that are not directly solved by standard mathematical methods but instead rely on insight and the synthesis of a variety of mathematical ideas. It promotes mental activity as well as greater mathematical skills, and is an ideal resource for successful preparation for the mathematics Olympiad. Numerous strategies and techniques are presented that can be used to solve intriguing and challenging problems of the type often found in competitions. The author uses a friendly, non-intimidating approach to emphasize connections between different fields of mathematics and often proposes several different ways to attack the same problem. Topics covered include functions and their properties, polynomials, trigonometric and transcendental equations and inequalities, optimization, differential equations, nonlinear systems, and word problems. Over 360 problems are included with hints, answers, and detailed solutions. Methods of Solving Nonstandard Problems will interest high school and college students, whether they are preparing for a math competition or looking to improve their mathematical skills, as well as anyone who enjoys an intellectual challenge and has a special love for mathematics. Teachers and college professors will be able to use it as an extra resource in the classroom to augment a conventional course of instruction in order to stimulate abstract thinking and inspire original thought.

Problem-Solving Through Problems

Author: Loren C. Larson

Publisher: Springer Science & Business Media

ISBN: 1461254981

Category: Mathematics

Page: 352

View: 6122

This is a practical anthology of some of the best elementary problems in different branches of mathematics. Arranged by subject, the problems highlight the most common problem-solving techniques encountered in undergraduate mathematics. This book teaches the important principles and broad strategies for coping with the experience of solving problems. It has been found very helpful for students preparing for the Putnam exam.

Infinite Sequences and Series

Author: Konrad Knopp

Publisher: Courier Corporation

ISBN: 0486152049

Category: Mathematics

Page: 208

View: 1820

Careful presentation of fundamentals of the theory by one of the finest modern expositors of higher mathematics. Covers functions of real and complex variables, arbitrary and null sequences, convergence and divergence, Cauchy's limit theorem, more.

Average Case Analysis of Algorithms on Sequences

Author: Wojciech Szpankowski

Publisher: John Wiley & Sons

ISBN: 1118031024

Category: Mathematics

Page: 576

View: 3433

A timely book on a topic that has witnessed a surge of interest over the last decade, owing in part to several novel applications, most notably in data compression and computational molecular biology. It describes methods employed in average case analysis of algorithms, combining both analytical and probabilistic tools in a single volume. * Tools are illustrated through problems on words with applications to molecular biology, data compression, security, and pattern matching. * Includes chapters on algorithms and data structures on words, probabilistic and analytical models, inclusion-exclusion principles, first and second moment methods, subadditive ergodic theorem and large deviations, elements of information theory, generating functions, complex asymptotic methods, Mellin transform and its applications, and analytic poissonization and depoissonization. * Written by an established researcher with a strong international reputation in the field.

Problems and Proofs in Numbers and Algebra

Author: Richard S. Millman,Peter J. Shiue,Eric Brendan Kahn

Publisher: Springer

ISBN: 3319144278

Category: Mathematics

Page: 223

View: 727

Focusing on an approach of solving rigorous problems and learning how to prove, this volume is concentrated on two specific content themes, elementary number theory and algebraic polynomials. The benefit to readers who are moving from calculus to more abstract mathematics is to acquire the ability to understand proofs through use of the book and the multitude of proofs and problems that will be covered throughout. This book is meant to be a transitional precursor to more complex topics in analysis, advanced number theory, and abstract algebra. To achieve the goal of conceptual understanding, a large number of problems and examples will be interspersed through every chapter. The problems are always presented in a multi-step and often very challenging, requiring the reader to think about proofs, counter-examples, and conjectures. Beyond the undergraduate mathematics student audience, the text can also offer a rigorous treatment of mathematics content (numbers and algebra) for high-achieving high school students. Furthermore, prospective teachers will add to the breadth of the audience as math education majors, will understand more thoroughly methods of proof, and will add to the depth of their mathematical knowledge. In the past, PNA has been taught in a "problem solving in middle school” course (twice), to a quite advanced high school students course (three semesters), and three times as a secondary resource for a course for future high school teachers. PNA is suitable for secondary math teachers who look for material to encourage and motivate more high achieving students.

Real Analysis via Sequences and Series

Author: Charles H.C. Little,Kee L. Teo,Bruce van Brunt

Publisher: Springer

ISBN: 1493926519

Category: Mathematics

Page: 476

View: 8579

This text gives a rigorous treatment of the foundations of calculus. In contrast to more traditional approaches, infinite sequences and series are placed at the forefront. The approach taken has not only the merit of simplicity, but students are well placed to understand and appreciate more sophisticated concepts in advanced mathematics. The authors mitigate potential difficulties in mastering the material by motivating definitions, results and proofs. Simple examples are provided to illustrate new material and exercises are included at the end of most sections. Noteworthy topics include: an extensive discussion of convergence tests for infinite series, Wallis’s formula and Stirling’s formula, proofs of the irrationality of π and e and a treatment of Newton’s method as a special instance of finding fixed points of iterated functions.

Mathematical Bridges

Author: Titu Andreescu,Cristinel Mortici,Marian Tetiva

Publisher: Birkhäuser

ISBN: 0817646299

Category: Mathematics

Page: 309

View: 8931

Building bridges between classical results and contemporary nonstandard problems, this highly relevant work embraces important topics in analysis and algebra from a problem-solving perspective. The book is structured to assist the reader in formulating and proving conjectures, as well as devising solutions to important mathematical problems by making connections between various concepts and ideas from different areas of mathematics. Instructors and motivated mathematics students from high school juniors to college seniors will find the work a useful resource in calculus, linear and abstract algebra, analysis and differential equations. Students with an interest in mathematics competitions must have this book in their personal libraries.

A Student's Guide to Infinite Series and Sequences

Author: Bernhard W. Bach, Jr.

Publisher: Cambridge University Press

ISBN: 1107059828

Category: Mathematics

Page: 160

View: 3184

An informal and practically focused introduction for undergraduate students exploring infinite series and sequences in engineering and the physical sciences. With a focus on practical applications in real world situations, it helps students to conceptualize the theory with real-world examples and to build their skill set.

Engineering Mathematics with Examples and Applications

Author: Xin-She Yang

Publisher: Academic Press

ISBN: 012809902X

Category: Mathematics

Page: 400

View: 5469

Engineering Mathematics with Examples and Applications provides a compact and concise primer in the field, starting with the foundations, and then gradually developing to the advanced level of mathematics that is necessary for all engineering disciplines. Therefore, this book's aim is to help undergraduates rapidly develop the fundamental knowledge of engineering mathematics. The book can also be used by graduates to review and refresh their mathematical skills. Step-by-step worked examples will help the students gain more insights and build sufficient confidence in engineering mathematics and problem-solving. The main approach and style of this book is informal, theorem-free, and practical. By using an informal and theorem-free approach, all fundamental mathematics topics required for engineering are covered, and readers can gain such basic knowledge of all important topics without worrying about rigorous (often boring) proofs. Certain rigorous proof and derivatives are presented in an informal way by direct, straightforward mathematical operations and calculations, giving students the same level of fundamental knowledge without any tedious steps. In addition, this practical approach provides over 100 worked examples so that students can see how each step of mathematical problems can be derived without any gap or jump in steps. Thus, readers can build their understanding and mathematical confidence gradually and in a step-by-step manner. Covers fundamental engineering topics that are presented at the right level, without worry of rigorous proofs Includes step-by-step worked examples (of which 100+ feature in the work) Provides an emphasis on numerical methods, such as root-finding algorithms, numerical integration, and numerical methods of differential equations Balances theory and practice to aid in practical problem-solving in various contexts and applications

Methods of Solving Number Theory Problems

Author: Ellina Grigorieva

Publisher: Birkhäuser

ISBN: 3319909150

Category: Mathematics

Page: 391

View: 7759

Through its engaging and unusual problems, this book demonstrates methods of reasoning necessary for learning number theory. Every technique is followed by problems (as well as detailed hints and solutions) that apply theorems immediately, so readers can solve a variety of abstract problems in a systematic, creative manner. New solutions often require the ingenious use of earlier mathematical concepts - not the memorization of formulas and facts. Questions also often permit experimental numeric validation or visual interpretation to encourage the combined use of deductive and intuitive thinking. The first chapter starts with simple topics like even and odd numbers, divisibility, and prime numbers and helps the reader to solve quite complex, Olympiad-type problems right away. It also covers properties of the perfect, amicable, and figurate numbers and introduces congruence. The next chapter begins with the Euclidean algorithm, explores the representations of integer numbers in different bases, and examines continued fractions, quadratic irrationalities, and the Lagrange Theorem. The last section of Chapter Two is an exploration of different methods of proofs. The third chapter is dedicated to solving Diophantine linear and nonlinear equations and includes different methods of solving Fermat’s (Pell’s) equations. It also covers Fermat’s factorization techniques and methods of solving challenging problems involving exponent and factorials. Chapter Four reviews the Pythagorean triple and quadruple and emphasizes their connection with geometry, trigonometry, algebraic geometry, and stereographic projection. A special case of Waring’s problem as a representation of a number by the sum of the squares or cubes of other numbers is covered, as well as quadratic residuals, Legendre and Jacobi symbols, and interesting word problems related to the properties of numbers. Appendices provide a historic overview of number theory and its main developments from the ancient cultures in Greece, Babylon, and Egypt to the modern day. Drawing from cases collected by an accomplished female mathematician, Methods in Solving Number Theory Problems is designed as a self-study guide or supplementary textbook for a one-semester course in introductory number theory. It can also be used to prepare for mathematical Olympiads. Elementary algebra, arithmetic and some calculus knowledge are the only prerequisites. Number theory gives precise proofs and theorems of an irreproachable rigor and sharpens analytical thinking, which makes this book perfect for anyone looking to build their mathematical confidence.

Topics in Algebra and Analysis

Preparing for the Mathematical Olympiad

Author: Radmila Bulajich Manfrino,José Antonio Gómez Ortega,Rogelio Valdez Delgado

Publisher: Birkhäuser

ISBN: 331911946X

Category: Mathematics

Page: 311

View: 9864

The techniques presented here are useful for solving mathematical contest problems in algebra and analysis. Most of the examples and exercises that appear in the book originate from mathematical Olympiad competitions around the world. In the first four chapters the authors cover material for competitions at high school level. The level advances with the chapters. The topics explored include polynomials, functional equations, sequences and an elementary treatment of complex numbers. The final chapters provide a comprehensive list of problems posed at national and international contests in recent years, and solutions to all exercises and problems presented in the book. It helps students in preparing for national and international mathematical contests form high school level to more advanced competitions and will also be useful for their first year of mathematical studies at the university. It will be of interest to teachers in college and university level, and trainers of the mathematical Olympiads.

Geometric Inequalities

Methods of Proving

Author: Hayk Sedrakyan,Nairi Sedrakyan

Publisher: Springer

ISBN: 3319550802

Category: Mathematics

Page: 452

View: 566

This unique collection of new and classical problems provides full coverage of geometric inequalities. Many of the 1,000 exercises are presented with detailed author-prepared-solutions, developing creativity and an arsenal of new approaches for solving mathematical problems. This book can serve teachers, high-school students, and mathematical competitors. It may also be used as supplemental reading, providing readers with new and classical methods for proving geometric inequalities.