Neural Network Design (2nd Edition)

Author: Martin Hagan,Howard Demuth,Mark Beale,Orlando De Jesus

Publisher: N.A

ISBN: 9780971732117

Category:

Page: 800

View: 5902

This book provides a clear and detailed coverage of fundamental neural network architectures and learning rules. In it, the authors emphasize a coherent presentation of the principal neural networks, methods for training them and their applications to practical problems.

Neuronale Netze selbst programmieren

Ein verständlicher Einstieg mit Python

Author: Tariq Rashid

Publisher: O'Reilly

ISBN: 3960101031

Category: Computers

Page: 232

View: 6050

Neuronale Netze sind Schlüsselelemente des Deep Learning und der Künstlichen Intelligenz, die heute zu Erstaunlichem in der Lage sind. Sie sind Grundlage vieler Anwendungen im Alltag wie beispielsweise Spracherkennung, Gesichtserkennung auf Fotos oder die Umwandlung von Sprache in Text. Dennoch verstehen nur wenige, wie neuronale Netze tatsächlich funktionieren. Dieses Buch nimmt Sie mit auf eine unterhaltsame Reise, die mit ganz einfachen Ideen beginnt und Ihnen Schritt für Schritt zeigt, wie neuronale Netze arbeiten: - Zunächst lernen Sie die mathematischen Konzepte kennen, die den neuronalen Netzen zugrunde liegen. Dafür brauchen Sie keine tieferen Mathematikkenntnisse, denn alle mathematischen Ideen werden behutsam und mit vielen Illustrationen und Beispielen erläutert. Eine Kurzeinführung in die Analysis unterstützt Sie dabei. - Dann geht es in die Praxis: Nach einer Einführung in die populäre und leicht zu lernende Programmiersprache Python bauen Sie allmählich Ihr eigenes neuronales Netz mit Python auf. Sie bringen ihm bei, handgeschriebene Zahlen zu erkennen, bis es eine Performance wie ein professionell entwickeltes Netz erreicht. - Im nächsten Schritt tunen Sie die Leistung Ihres neuronalen Netzes so weit, dass es eine Zahlenerkennung von 98 % erreicht – nur mit einfachen Ideen und simplem Code. Sie testen das Netz mit Ihrer eigenen Handschrift und werfen noch einen Blick in das mysteriöse Innere eines neuronalen Netzes. - Zum Schluss lassen Sie das neuronale Netz auf einem Raspberry Pi Zero laufen. Tariq Rashid erklärt diese schwierige Materie außergewöhnlich klar und verständlich, dadurch werden neuronale Netze für jeden Interessierten zugänglich und praktisch nachvollziehbar.

Compiler

Prinzipien, Techniken und Werkzeuge

Author: Alfred V. Aho

Publisher: Pearson Deutschland GmbH

ISBN: 9783827370976

Category: Compiler

Page: 1253

View: 8445

The Design of Everyday Things

Psychologie und Design der alltäglichen Dinge

Author: Norman Don

Publisher: Vahlen

ISBN: 3800648105

Category: Business & Economics

Page: 320

View: 8843

Apple, Audi, Braun oder Samsung machen es vor: Gutes Design ist heute eine kritische Voraussetzung für erfolgreiche Produkte. Dieser Klassiker beschreibt die fundamentalen Prinzipien, um Dinge des täglichen Gebrauchs umzuwandeln in unterhaltsame und zufriedenstellende Produkte. Don Norman fordert ein Zusammenspiel von Mensch und Technologie mit dem Ziel, dass Designer und Produktentwickler die Bedürfnisse, Fähigkeiten und Handlungsweisen der Nutzer in den Vordergrund stellen und Designs an diesen angepasst werden. The Design of Everyday Things ist eine informative und spannende Einführung für Designer, Marketer, Produktentwickler und für alle an gutem Design interessierten Menschen. Zum Autor Don Norman ist emeritierter Professor für Kognitionswissenschaften. Er lehrte an der University of California in San Diego und der Northwest University in Illinois. Mitte der Neunzigerjahre leitete Don Norman die Advanced Technology Group bei Apple. Dort prägte er den Begriff der User Experience, um über die reine Benutzbarkeit hinaus eine ganzheitliche Erfahrung der Anwender im Umgang mit Technik in den Vordergrund zu stellen. Norman ist Mitbegründer der Beratungsfirma Nielsen Norman Group und hat unter anderem Autohersteller von BMW bis Toyota beraten. „Keiner kommt an Don Norman vorbei, wenn es um Fragen zu einem Design geht, das sich am Menschen orientiert.“ Brand Eins 7/2013 „Design ist einer der wichtigsten Wettbewerbsvorteile. Dieses Buch macht Spaß zu lesen und ist von größter Bedeutung.” Tom Peters, Co-Autor von „Auf der Suche nach Spitzenleistungen“

Artificial Neural Networks

A Practical Course

Author: Ivan Nunes da Silva,Danilo Hernane Spatti,Rogerio Andrade Flauzino,Luisa Helena Bartocci Liboni,Silas Franco dos Reis Alves

Publisher: Springer

ISBN: 3319431625

Category: Technology & Engineering

Page: 307

View: 4819

This book provides comprehensive coverage of neural networks, their evolution, their structure, the problems they can solve, and their applications. The first half of the book looks at theoretical investigations on artificial neural networks and addresses the key architectures that are capable of implementation in various application scenarios. The second half is designed specifically for the production of solutions using artificial neural networks to solve practical problems arising from different areas of knowledge. It also describes the various implementation details that were taken into account to achieve the reported results. These aspects contribute to the maturation and improvement of experimental techniques to specify the neural network architecture that is most appropriate for a particular application scope. The book is appropriate for students in graduate and upper undergraduate courses in addition to researchers and professionals.

Projektsteuerung in der Produktentwicklung mittels Predictive Analytics

Author: Christian Dölle

Publisher: Apprimus Wissenschaftsverlag

ISBN: 3863596080

Category: Technology & Engineering

Page: 282

View: 6469

Um im internationalen Wettbewerb bestehen zu können, ist es vor allem für Unternehmen aus Hochlohnländern wichtig, anforderungsgerechte Produkte am Markt zu platzieren. In diesem Zusammenhang gewinnt die effiziente und effektive Durchführung von Entwicklungsprojekten zunehmend an Bedeutung. Im Rahmen der Arbeit eine Methodik entwickelt, welche durch die Anwendung eines Predictive Analytics-Modells die Implementierung von präventiven Steuerungsmaßnahmen zur Einhaltung der gesetzten Zeit-, Kosten- und Qualitätsziele unterstützt.

Data mining

praktische Werkzeuge und Techniken für das maschinelle Lernen

Author: Ian H. Witten,Eibe Frank

Publisher: N.A

ISBN: 9783446215337

Category:

Page: 386

View: 2542

Advanced Applications for Artificial Neural Networks

Author: Adel El-Shahat

Publisher: BoD – Books on Demand

ISBN: 9535137808

Category: Computers

Page: 296

View: 7251

In this book, highly qualified multidisciplinary scientists grasp their recent researches motivated by the importance of artificial neural networks. It addresses advanced applications and innovative case studies for the next-generation optical networks based on modulation recognition using artificial neural networks, hardware ANN for gait generation of multi-legged robots, production of high-resolution soil property ANN maps, ANN and dynamic factor models to combine forecasts, ANN parameter recognition of engineering constants in Civil Engineering, ANN electricity consumption and generation forecasting, ANN for advanced process control, ANN breast cancer detection, ANN applications in biofuels, ANN modeling for manufacturing process optimization, spectral interference correction using a large-size spectrometer and ANN-based deep learning, solar radiation ANN prediction using NARX model, and ANN data assimilation for an atmospheric general circulation model.

Neural Networks for Robotics

An Engineering Perspective

Author: Nancy Arana-Daniel,Alma Y. Alanis,Carlos Lopez-Franco

Publisher: CRC Press

ISBN: 1351231774

Category: Technology & Engineering

Page: 209

View: 8252

The book offers an insight on artificial neural networks for giving a robot a high level of autonomous tasks, such as navigation, cost mapping, object recognition, intelligent control of ground and aerial robots, and clustering, with real-time implementations. The reader will learn various methodologies that can be used to solve each stage on autonomous navigation for robots, from object recognition, clustering of obstacles, cost mapping of environments, path planning, and vision to low level control. These methodologies include real-life scenarios to implement a wide range of artificial neural network architectures. Includes real-time examples for various robotic platforms. Discusses real-time implementation for land and aerial robots. Presents solutions for problems encountered in autonomous navigation. Explores the mathematical preliminaries needed to understand the proposed methodologies. Integrates computing, communications, control, sensing, planning, and other techniques by means of artificial neural networks for robotics.

Encyclopedia of Information Science and Technology, Fourth Edition

Author: Khosrow-Pour, D.B.A., Mehdi

Publisher: IGI Global

ISBN: 1522522565

Category: Computers

Page: 8104

View: 9467

In recent years, our world has experienced a profound shift and progression in available computing and knowledge sharing innovations. These emerging advancements have developed at a rapid pace, disseminating into and affecting numerous aspects of contemporary society. This has created a pivotal need for an innovative compendium encompassing the latest trends, concepts, and issues surrounding this relevant discipline area. During the past 15 years, the Encyclopedia of Information Science and Technology has become recognized as one of the landmark sources of the latest knowledge and discoveries in this discipline. The Encyclopedia of Information Science and Technology, Fourth Edition is a 10-volume set which includes 705 original and previously unpublished research articles covering a full range of perspectives, applications, and techniques contributed by thousands of experts and researchers from around the globe. This authoritative encyclopedia is an all-encompassing, well-established reference source that is ideally designed to disseminate the most forward-thinking and diverse research findings. With critical perspectives on the impact of information science management and new technologies in modern settings, including but not limited to computer science, education, healthcare, government, engineering, business, and natural and physical sciences, it is a pivotal and relevant source of knowledge that will benefit every professional within the field of information science and technology and is an invaluable addition to every academic and corporate library.

Grundkurs Künstliche Intelligenz

Eine praxisorientierte Einführung

Author: Wolfgang Ertel

Publisher: Springer-Verlag

ISBN: 3834894419

Category: Computers

Page: 334

View: 3930

Alle Teilgebiete der KI werden mit dieser Einführung kompakt, leicht verständlich und anwendungsbezogen dargestellt. Hier schreibt jemand, der das Gebiet nicht nur bestens kennt, sondern auch in der Lehre engagiert und erfolgreich vertritt. Von der klassischen Logik über das Schließen mit Unsicherheit und maschinelles Lernen bis hin zu Anwendungen wie Expertensysteme oder lernfähige Roboter. Sie werden von dem sehr guten Überblick in dieses faszinierende Teilgebiet der Informatik profitieren. Und Sie gewinnen vertiefte Kenntnisse, z. B. hinsichtlich der wichtigsten Verfahren zur Repräsentation und Verarbeitung von Wissen. Vor allem steht der Anwendungsbezug im Fokus der Darstellung. Viele Übungsaufgaben mit Lösungen sowie eine strukturierte Liste mit Verweisen auf Literatur und Ressourcen im Web ermöglichen ein effektives und kurzweiliges Selbststudium. "Wolfgang Ertel [...] schafft es auf rund 300 Seiten verständlich zu erklären, wie Aussagenlogik, maschinelles Lernen und neuronale Netze die Grundlagen für künstliche Intelligenz bilden." Technology Review 04/2008

Grundlagen zur Neuroinformatik und Neurobiologie

The Computational Brain in deutscher Sprache

Author: Patricia S. Churchland,Terrence J. Sejnowski

Publisher: Springer-Verlag

ISBN: 3322868214

Category: Technology & Engineering

Page: 702

View: 1952

The Computational Brain, das außergewöhnliche Buch über vergleichende Forschung in den Bereichen von menschlichem Gehirn und neuesten Möglichkeiten der Computertechnologie, liegt hiermit erstmals in deutscher Sprache vor. Geschrieben von einem führenden Forscherteam in den USA, ist es eine Fundgrube für alle, die wissen wollen, was der Stand der Wissenschaft auf diesem Gebiet ist. Die Autoren führen die Bereiche der Neuroinformatik und Neurobiologie mit gut ausgesuchten Beispielen und der gebotenen Hintergrundinformation gekonnt zusammen. Das Buch wird somit nicht nur dem Fachwissenschaftler sondern auch dem interdisziplinären Interesse des Informatikers und des Biologen auf eine hervorragende Weise gerecht. Übersetzt wurde das Buch von Prof. Dr. Steffen Hölldobler und Dipl.-Biol. Claudia Hölldobler, einem Informatiker und einer Biologin. Rezension in Spektrum der Wissenschaft nr. 10, S. 122 f. im Oktober 1997 (...) Die 1992 erschienene amerikanische Originalausgabe des vorliegenden Werkes ist so erfolgreich, daß man bereits von einem Klassiker reden kann. (...) (...) ....ist das Buch sehr zu empfehlen. In Verbindung von Neurobiologie und Neuroinformatik konkurrenzlos, vermittelt es einiges von der Faszination theoretischer Hirnforschung, die auch in Deutschland zunehmend mehr Wissenschaftler in ihren Bann schlägt. Rezension erschienen in: Computer Spektrum 3/1997, S. 2 (...)Das Buch wird somit nicht nur dem Fachwissenschaftler, sondern auch den interdisziplinären Interesse des Informatikers und des Biologen auf eine hervorragende Weise gerecht(...)

Neuronale Netze. Grundlagen

Mit Beispielprogrammen in Java

Author: Thomas Kaffka

Publisher: MITP-Verlags GmbH & Co. KG

ISBN: 395845609X

Category: Computers

Page: 240

View: 5551

Einführung in Machine Learning mit Python

Praxiswissen Data Science

Author: Andreas C. Müller,Sarah Guido

Publisher: O'Reilly

ISBN: 3960101120

Category: Computers

Page: 378

View: 1926

Machine Learning ist zu einem wichtigen Bestandteil vieler kommerzieller Anwendungen und Forschungsprojekte geworden, von der medizinischen Diagnostik bis hin zur Suche nach Freunden in sozialen Netzwerken. Um Machine-Learning-Anwendungen zu entwickeln, braucht es keine großen Expertenteams: Wenn Sie Python-Grundkenntnisse mitbringen, zeigt Ihnen dieses Praxisbuch, wie Sie Ihre eigenen Machine-Learning-Lösungen erstellen. Mit Python und der scikit-learn-Bibliothek erarbeiten Sie sich alle Schritte, die für eine erfolgreiche Machine-Learning-Anwendung notwendig sind. Die Autoren Andreas Müller und Sarah Guido konzentrieren sich bei der Verwendung von Machine-Learning-Algorithmen auf die praktischen Aspekte statt auf die Mathematik dahinter. Wenn Sie zusätzlich mit den Bibliotheken NumPy und matplotlib vertraut sind, hilft Ihnen dies, noch mehr aus diesem Tutorial herauszuholen. Das Buch zeigt Ihnen: - grundlegende Konzepte und Anwendungen von Machine Learning - Vor- und Nachteile weit verbreiteter maschineller Lernalgorithmen - wie sich die von Machine Learning verarbeiteten Daten repräsentieren lassen und auf welche Aspekte der Daten Sie sich konzentrieren sollten - fortgeschrittene Methoden zur Auswertung von Modellen und zum Optimieren von Parametern - das Konzept von Pipelines, mit denen Modelle verkettet und Arbeitsabläufe gekapselt werden - Arbeitsmethoden für Textdaten, insbesondere textspezifische Verarbeitungstechniken - Möglichkeiten zur Verbesserung Ihrer Fähigkeiten in den Bereichen Machine Learning und Data Science Dieses Buch ist eine fantastische, super praktische Informationsquelle für jeden, der mit Machine Learning in Python starten möchte – ich wünschte nur, es hätte schon existiert, als ich mit scikit-learn anfing! Hanna Wallach, Senior Researcher, Microsoft Research

Theorie der neuronalen Netze

Eine systematische Einführung

Author: Raul Rojas

Publisher: Springer-Verlag

ISBN: 3642612318

Category: Computers

Page: 446

View: 2299

Neuronale Netze sind ein Berechenbarkeitsparadigma, das in der Informatik zunehmende Beachtung findet. In diesem Buch werden theoretische Ansätze und Modelle, die in der Literatur verstreut sind, zu einer modellübergreifenden Theorie der künstlichen neuronalen Netze zusammengefügt. Mit ständigem Blick auf die Biologie wird - ausgehend von einfachsten Netzen - gezeigt, wie sich die Eigenschaften der Modelle verändern, wenn allgemeinere Berechnungselemente und Netztopologien eingeführt werden. Jedes Kapitel enthält Beispiele und ist ausführlich illustriert und durch bibliographische Anmerkungen abgerundet. Das Buch richtet sich an Leser, die sich einen Überblick verschaffen oder vorhandene Kenntnisse vertiefen wollen. Es ist als Grundlage für Neuroinformatikvorlesungen an deutschsprachigen Universitäten geeignet.

Statistik-Workshop für Programmierer

Author: Allen B. Downey

Publisher: O'Reilly Germany

ISBN: 3868993436

Category: Computers

Page: 160

View: 6362

Wenn Sie programmieren können, beherrschen Sie bereits Techniken, um aus Daten Wissen zu extrahieren. Diese kompakte Einführung in die Statistik zeigt Ihnen, wie Sie rechnergestützt, anstatt auf mathematischem Weg Datenanalysen mit Python durchführen können. Praktischer Programmier-Workshop statt grauer Theorie: Das Buch führt Sie anhand eines durchgängigen Fallbeispiels durch eine vollständige Datenanalyse -- von der Datensammlung über die Berechnung statistischer Kennwerte und Identifikation von Mustern bis hin zum Testen statistischer Hypothesen. Gleichzeitig werden Sie mit statistischen Verteilungen, den Regeln der Wahrscheinlichkeitsrechnung, Visualisierungsmöglichkeiten und vielen anderen Arbeitstechniken und Konzepten vertraut gemacht. Statistik-Konzepte zum Ausprobieren: Entwickeln Sie über das Schreiben und Testen von Code ein Verständnis für die Grundlagen von Wahrscheinlichkeitsrechnung und Statistik: Überprüfen Sie das Verhalten statistischer Merkmale durch Zufallsexperimente, zum Beispiel indem Sie Stichproben aus unterschiedlichen Verteilungen ziehen. Nutzen Sie Simulationen, um Konzepte zu verstehen, die auf mathematischem Weg nur schwer zugänglich sind. Lernen Sie etwas über Themen, die in Einführungen üblicherweise nicht vermittelt werden, beispielsweise über die Bayessche Schätzung. Nutzen Sie Python zur Bereinigung und Aufbereitung von Rohdaten aus nahezu beliebigen Quellen. Beantworten Sie mit den Mitteln der Inferenzstatistik Fragestellungen zu realen Daten.

R in a Nutshell

Author: Joseph Adler

Publisher: O'Reilly Germany

ISBN: 3897216507

Category: Computers

Page: 768

View: 5648

Wozu sollte man R lernen? Da gibt es viele Gründe: Weil man damit natürlich ganz andere Möglichkeiten hat als mit einer Tabellenkalkulation wie Excel, aber auch mehr Spielraum als mit gängiger Statistiksoftware wie SPSS und SAS. Anders als bei diesen Programmen hat man nämlich direkten Zugriff auf dieselbe, vollwertige Programmiersprache, mit der die fertigen Analyse- und Visualisierungsmethoden realisiert sind – so lassen sich nahtlos eigene Algorithmen integrieren und komplexe Arbeitsabläufe realisieren. Und nicht zuletzt, weil R offen gegenüber beliebigen Datenquellen ist, von der einfachen Textdatei über binäre Fremdformate bis hin zu den ganz großen relationalen Datenbanken. Zudem ist R Open Source und erobert momentan von der universitären Welt aus die professionelle Statistik. R kann viel. Und Sie können viel mit R machen – wenn Sie wissen, wie es geht. Willkommen in der R-Welt: Installieren Sie R und stöbern Sie in Ihrem gut bestückten Werkzeugkasten: Sie haben eine Konsole und eine grafische Benutzeroberfläche, unzählige vordefinierte Analyse- und Visualisierungsoperationen – und Pakete, Pakete, Pakete. Für quasi jeden statistischen Anwendungsbereich können Sie sich aus dem reichen Schatz der R-Community bedienen. Sprechen Sie R! Sie müssen Syntax und Grammatik von R nicht lernen – wie im Auslandsurlaub kommen Sie auch hier gut mit ein paar aufgeschnappten Brocken aus. Aber es lohnt sich: Wenn Sie wissen, was es mit R-Objekten auf sich hat, wie Sie eigene Funktionen schreiben und Ihre eigenen Pakete schnüren, sind Sie bei der Analyse Ihrer Daten noch flexibler und effektiver. Datenanalyse und Statistik in der Praxis: Anhand unzähliger Beispiele aus Medizin, Wirtschaft, Sport und Bioinformatik lernen Sie, wie Sie Daten aufbereiten, mithilfe der Grafikfunktionen des lattice-Pakets darstellen, statistische Tests durchführen und Modelle anpassen. Danach werden Ihnen Ihre Daten nichts mehr verheimlichen.

Biologie

gymnasiale Oberstufe

Author: Neil A. Campbell,Jane B. Reece

Publisher: Pearson Deutschland GmbH

ISBN: 9783868949001

Category:

Page: 748

View: 6720

Die 8. Auflage des Campbell (deutsche Ausgabe BA 11/09) wurde jetzt unter Beachtung der hiesigen Lehrpläne für die Oberstufe bearbeitet und erschien in einem wesentlich handlicheren, schultaschenfähigen Format. Der Campbell hatte sich bereits früher als Zusatzlehrbuch für Leistungskurse Biologie und berufliche Gymnasien mit entsprechend fachlicher Ausrichtung bewährt. Diese für Schulen optimierte Ausgabe ist im Rahmen des Imprints Pearson Schule eine folgerichtige Edition (vgl. auch M. Kölling: "Einführung in Java mit Greenfoot"; R. Hattenhauer: "Informatik für Schule und Ausbildung", beide BA 9/10). Ein Themenband zur Ökologie ist für November diesen Jahres angekündigt. - Vorrangig ist der Band für Bibliotheken mit den oben angesprochenen Schultypen im Einzugsbereich zu empfehlen. Als allgemeines Biologielehrbuch ohne bundeslandspezifische Varianten ist der auch preislich sehr akzeptable Titel aufgrund seines fachlichen Niveaus und seiner grafisch hervorragenden Gestaltung auch darüber hinaus einsetzbar. (2 S)