Neural Network Design (2nd Edition)

Author: Martin Hagan,Howard Demuth,Mark Beale,Orlando De Jesus

Publisher: N.A

ISBN: 9780971732117

Category:

Page: 800

View: 7471

This book provides a clear and detailed coverage of fundamental neural network architectures and learning rules. In it, the authors emphasize a coherent presentation of the principal neural networks, methods for training them and their applications to practical problems.

Neuronale Netze selbst programmieren

Ein verständlicher Einstieg mit Python

Author: Tariq Rashid

Publisher: O'Reilly

ISBN: 3960101031

Category: Computers

Page: 232

View: 7386

Neuronale Netze sind Schlüsselelemente des Deep Learning und der Künstlichen Intelligenz, die heute zu Erstaunlichem in der Lage sind. Sie sind Grundlage vieler Anwendungen im Alltag wie beispielsweise Spracherkennung, Gesichtserkennung auf Fotos oder die Umwandlung von Sprache in Text. Dennoch verstehen nur wenige, wie neuronale Netze tatsächlich funktionieren. Dieses Buch nimmt Sie mit auf eine unterhaltsame Reise, die mit ganz einfachen Ideen beginnt und Ihnen Schritt für Schritt zeigt, wie neuronale Netze arbeiten: - Zunächst lernen Sie die mathematischen Konzepte kennen, die den neuronalen Netzen zugrunde liegen. Dafür brauchen Sie keine tieferen Mathematikkenntnisse, denn alle mathematischen Ideen werden behutsam und mit vielen Illustrationen und Beispielen erläutert. Eine Kurzeinführung in die Analysis unterstützt Sie dabei. - Dann geht es in die Praxis: Nach einer Einführung in die populäre und leicht zu lernende Programmiersprache Python bauen Sie allmählich Ihr eigenes neuronales Netz mit Python auf. Sie bringen ihm bei, handgeschriebene Zahlen zu erkennen, bis es eine Performance wie ein professionell entwickeltes Netz erreicht. - Im nächsten Schritt tunen Sie die Leistung Ihres neuronalen Netzes so weit, dass es eine Zahlenerkennung von 98 % erreicht – nur mit einfachen Ideen und simplem Code. Sie testen das Netz mit Ihrer eigenen Handschrift und werfen noch einen Blick in das mysteriöse Innere eines neuronalen Netzes. - Zum Schluss lassen Sie das neuronale Netz auf einem Raspberry Pi Zero laufen. Tariq Rashid erklärt diese schwierige Materie außergewöhnlich klar und verständlich, dadurch werden neuronale Netze für jeden Interessierten zugänglich und praktisch nachvollziehbar.

R in a Nutshell

Author: Joseph Adler

Publisher: O'Reilly Germany

ISBN: 3897216507

Category: Computers

Page: 768

View: 1083

Wozu sollte man R lernen? Da gibt es viele Gründe: Weil man damit natürlich ganz andere Möglichkeiten hat als mit einer Tabellenkalkulation wie Excel, aber auch mehr Spielraum als mit gängiger Statistiksoftware wie SPSS und SAS. Anders als bei diesen Programmen hat man nämlich direkten Zugriff auf dieselbe, vollwertige Programmiersprache, mit der die fertigen Analyse- und Visualisierungsmethoden realisiert sind – so lassen sich nahtlos eigene Algorithmen integrieren und komplexe Arbeitsabläufe realisieren. Und nicht zuletzt, weil R offen gegenüber beliebigen Datenquellen ist, von der einfachen Textdatei über binäre Fremdformate bis hin zu den ganz großen relationalen Datenbanken. Zudem ist R Open Source und erobert momentan von der universitären Welt aus die professionelle Statistik. R kann viel. Und Sie können viel mit R machen – wenn Sie wissen, wie es geht. Willkommen in der R-Welt: Installieren Sie R und stöbern Sie in Ihrem gut bestückten Werkzeugkasten: Sie haben eine Konsole und eine grafische Benutzeroberfläche, unzählige vordefinierte Analyse- und Visualisierungsoperationen – und Pakete, Pakete, Pakete. Für quasi jeden statistischen Anwendungsbereich können Sie sich aus dem reichen Schatz der R-Community bedienen. Sprechen Sie R! Sie müssen Syntax und Grammatik von R nicht lernen – wie im Auslandsurlaub kommen Sie auch hier gut mit ein paar aufgeschnappten Brocken aus. Aber es lohnt sich: Wenn Sie wissen, was es mit R-Objekten auf sich hat, wie Sie eigene Funktionen schreiben und Ihre eigenen Pakete schnüren, sind Sie bei der Analyse Ihrer Daten noch flexibler und effektiver. Datenanalyse und Statistik in der Praxis: Anhand unzähliger Beispiele aus Medizin, Wirtschaft, Sport und Bioinformatik lernen Sie, wie Sie Daten aufbereiten, mithilfe der Grafikfunktionen des lattice-Pakets darstellen, statistische Tests durchführen und Modelle anpassen. Danach werden Ihnen Ihre Daten nichts mehr verheimlichen.

Grundlagen zur Neuroinformatik und Neurobiologie

The Computational Brain in deutscher Sprache

Author: Patricia S. Churchland,Terrence J. Sejnowski

Publisher: Springer-Verlag

ISBN: 3322868214

Category: Technology & Engineering

Page: 702

View: 2055

The Computational Brain, das außergewöhnliche Buch über vergleichende Forschung in den Bereichen von menschlichem Gehirn und neuesten Möglichkeiten der Computertechnologie, liegt hiermit erstmals in deutscher Sprache vor. Geschrieben von einem führenden Forscherteam in den USA, ist es eine Fundgrube für alle, die wissen wollen, was der Stand der Wissenschaft auf diesem Gebiet ist. Die Autoren führen die Bereiche der Neuroinformatik und Neurobiologie mit gut ausgesuchten Beispielen und der gebotenen Hintergrundinformation gekonnt zusammen. Das Buch wird somit nicht nur dem Fachwissenschaftler sondern auch dem interdisziplinären Interesse des Informatikers und des Biologen auf eine hervorragende Weise gerecht. Übersetzt wurde das Buch von Prof. Dr. Steffen Hölldobler und Dipl.-Biol. Claudia Hölldobler, einem Informatiker und einer Biologin. Rezension in Spektrum der Wissenschaft nr. 10, S. 122 f. im Oktober 1997 (...) Die 1992 erschienene amerikanische Originalausgabe des vorliegenden Werkes ist so erfolgreich, daß man bereits von einem Klassiker reden kann. (...) (...) ....ist das Buch sehr zu empfehlen. In Verbindung von Neurobiologie und Neuroinformatik konkurrenzlos, vermittelt es einiges von der Faszination theoretischer Hirnforschung, die auch in Deutschland zunehmend mehr Wissenschaftler in ihren Bann schlägt. Rezension erschienen in: Computer Spektrum 3/1997, S. 2 (...)Das Buch wird somit nicht nur dem Fachwissenschaftler, sondern auch den interdisziplinären Interesse des Informatikers und des Biologen auf eine hervorragende Weise gerecht(...)

Data mining

praktische Werkzeuge und Techniken für das maschinelle Lernen

Author: Ian H. Witten,Eibe Frank

Publisher: N.A

ISBN: 9783446215337

Category:

Page: 386

View: 7744

Artificial Neural Networks

A Practical Course

Author: Ivan Nunes da Silva,Danilo Hernane Spatti,Rogerio Andrade Flauzino,Luisa Helena Bartocci Liboni,Silas Franco dos Reis Alves

Publisher: Springer

ISBN: 3319431625

Category: Technology & Engineering

Page: 307

View: 7664

This book provides comprehensive coverage of neural networks, their evolution, their structure, the problems they can solve, and their applications. The first half of the book looks at theoretical investigations on artificial neural networks and addresses the key architectures that are capable of implementation in various application scenarios. The second half is designed specifically for the production of solutions using artificial neural networks to solve practical problems arising from different areas of knowledge. It also describes the various implementation details that were taken into account to achieve the reported results. These aspects contribute to the maturation and improvement of experimental techniques to specify the neural network architecture that is most appropriate for a particular application scope. The book is appropriate for students in graduate and upper undergraduate courses in addition to researchers and professionals.

Projektsteuerung in der Produktentwicklung mittels Predictive Analytics

Author: Christian Dölle

Publisher: Apprimus Wissenschaftsverlag

ISBN: 3863596080

Category: Technology & Engineering

Page: 282

View: 9371

Um im internationalen Wettbewerb bestehen zu können, ist es vor allem für Unternehmen aus Hochlohnländern wichtig, anforderungsgerechte Produkte am Markt zu platzieren. In diesem Zusammenhang gewinnt die effiziente und effektive Durchführung von Entwicklungsprojekten zunehmend an Bedeutung. Im Rahmen der Arbeit eine Methodik entwickelt, welche durch die Anwendung eines Predictive Analytics-Modells die Implementierung von präventiven Steuerungsmaßnahmen zur Einhaltung der gesetzten Zeit-, Kosten- und Qualitätsziele unterstützt.

Theorie der neuronalen Netze

Eine systematische Einführung

Author: Raul Rojas

Publisher: Springer-Verlag

ISBN: 3642612318

Category: Computers

Page: 446

View: 7177

Neuronale Netze sind ein Berechenbarkeitsparadigma, das in der Informatik zunehmende Beachtung findet. In diesem Buch werden theoretische Ansätze und Modelle, die in der Literatur verstreut sind, zu einer modellübergreifenden Theorie der künstlichen neuronalen Netze zusammengefügt. Mit ständigem Blick auf die Biologie wird - ausgehend von einfachsten Netzen - gezeigt, wie sich die Eigenschaften der Modelle verändern, wenn allgemeinere Berechnungselemente und Netztopologien eingeführt werden. Jedes Kapitel enthält Beispiele und ist ausführlich illustriert und durch bibliographische Anmerkungen abgerundet. Das Buch richtet sich an Leser, die sich einen Überblick verschaffen oder vorhandene Kenntnisse vertiefen wollen. Es ist als Grundlage für Neuroinformatikvorlesungen an deutschsprachigen Universitäten geeignet.

Neural Networks for Robotics

An Engineering Perspective

Author: Nancy Arana-Daniel,Alma Y. Alanis,Carlos Lopez-Franco

Publisher: CRC Press

ISBN: 1351231774

Category: Technology & Engineering

Page: 209

View: 4856

The book offers an insight on artificial neural networks for giving a robot a high level of autonomous tasks, such as navigation, cost mapping, object recognition, intelligent control of ground and aerial robots, and clustering, with real-time implementations. The reader will learn various methodologies that can be used to solve each stage on autonomous navigation for robots, from object recognition, clustering of obstacles, cost mapping of environments, path planning, and vision to low level control. These methodologies include real-life scenarios to implement a wide range of artificial neural network architectures.

Encyclopedia of Information Science and Technology, Fourth Edition

Author: Khosrow-Pour, D.B.A., Mehdi

Publisher: IGI Global

ISBN: 1522522565

Category: Computers

Page: 8104

View: 3786

In recent years, our world has experienced a profound shift and progression in available computing and knowledge sharing innovations. These emerging advancements have developed at a rapid pace, disseminating into and affecting numerous aspects of contemporary society. This has created a pivotal need for an innovative compendium encompassing the latest trends, concepts, and issues surrounding this relevant discipline area. During the past 15 years, the Encyclopedia of Information Science and Technology has become recognized as one of the landmark sources of the latest knowledge and discoveries in this discipline. The Encyclopedia of Information Science and Technology, Fourth Edition is a 10-volume set which includes 705 original and previously unpublished research articles covering a full range of perspectives, applications, and techniques contributed by thousands of experts and researchers from around the globe. This authoritative encyclopedia is an all-encompassing, well-established reference source that is ideally designed to disseminate the most forward-thinking and diverse research findings. With critical perspectives on the impact of information science management and new technologies in modern settings, including but not limited to computer science, education, healthcare, government, engineering, business, and natural and physical sciences, it is a pivotal and relevant source of knowledge that will benefit every professional within the field of information science and technology and is an invaluable addition to every academic and corporate library.

Case Studies in Intelligent Computing

Achievements and Trends

Author: Biju Issac,Nauman Israr

Publisher: CRC Press

ISBN: 1482207036

Category: Computers

Page: 593

View: 5004

Although the field of intelligent systems has grown rapidly in recent years, there has been a need for a book that supplies a timely and accessible understanding of this important technology. Filling this need, Case Studies in Intelligent Computing: Achievements and Trends provides an up-to-date introduction to intelligent systems. This edited book captures the state of the art in intelligent computing research through case studies that examine recent developments, developmental tools, programming, and approaches related to artificial intelligence (AI). The case studies illustrate successful machine learning and AI-based applications across various industries, including: A non-invasive and instant disease detection technique based upon machine vision through the image scanning of the eyes of subjects with conjunctivitis and jaundice Semantic orientation-based approaches for sentiment analysis An efficient and autonomous method for distinguishing application protocols through the use of a dynamic protocol classification system Nonwavelet and wavelet image denoising methods using fuzzy logic Using remote sensing inputs based on swarm intelligence for strategic decision making in modern warfare Rainfall–runoff modeling using a wavelet-based artificial neural network (WANN) model Illustrating the challenges currently facing practitioners, the book presents powerful solutions recently proposed by leading researchers. The examination of the various case studies will help you develop the practical understanding required to participate in the advancement of intelligent computing applications. The book will help budding researchers understand how and where intelligent computing can be applied. It will also help more established researchers update their skills and fine-tune their approach to intelligent computing.

Statistik-Workshop für Programmierer

Author: Allen B. Downey

Publisher: O'Reilly Germany

ISBN: 3868993436

Category: Computers

Page: 160

View: 4488

Wenn Sie programmieren können, beherrschen Sie bereits Techniken, um aus Daten Wissen zu extrahieren. Diese kompakte Einführung in die Statistik zeigt Ihnen, wie Sie rechnergestützt, anstatt auf mathematischem Weg Datenanalysen mit Python durchführen können. Praktischer Programmier-Workshop statt grauer Theorie: Das Buch führt Sie anhand eines durchgängigen Fallbeispiels durch eine vollständige Datenanalyse -- von der Datensammlung über die Berechnung statistischer Kennwerte und Identifikation von Mustern bis hin zum Testen statistischer Hypothesen. Gleichzeitig werden Sie mit statistischen Verteilungen, den Regeln der Wahrscheinlichkeitsrechnung, Visualisierungsmöglichkeiten und vielen anderen Arbeitstechniken und Konzepten vertraut gemacht. Statistik-Konzepte zum Ausprobieren: Entwickeln Sie über das Schreiben und Testen von Code ein Verständnis für die Grundlagen von Wahrscheinlichkeitsrechnung und Statistik: Überprüfen Sie das Verhalten statistischer Merkmale durch Zufallsexperimente, zum Beispiel indem Sie Stichproben aus unterschiedlichen Verteilungen ziehen. Nutzen Sie Simulationen, um Konzepte zu verstehen, die auf mathematischem Weg nur schwer zugänglich sind. Lernen Sie etwas über Themen, die in Einführungen üblicherweise nicht vermittelt werden, beispielsweise über die Bayessche Schätzung. Nutzen Sie Python zur Bereinigung und Aufbereitung von Rohdaten aus nahezu beliebigen Quellen. Beantworten Sie mit den Mitteln der Inferenzstatistik Fragestellungen zu realen Daten.

Einführung in Machine Learning mit Python

Praxiswissen Data Science

Author: Andreas C. Müller,Sarah Guido

Publisher: O'Reilly

ISBN: 3960101120

Category: Computers

Page: 378

View: 9029

Machine Learning ist zu einem wichtigen Bestandteil vieler kommerzieller Anwendungen und Forschungsprojekte geworden, von der medizinischen Diagnostik bis hin zur Suche nach Freunden in sozialen Netzwerken. Um Machine-Learning-Anwendungen zu entwickeln, braucht es keine großen Expertenteams: Wenn Sie Python-Grundkenntnisse mitbringen, zeigt Ihnen dieses Praxisbuch, wie Sie Ihre eigenen Machine-Learning-Lösungen erstellen. Mit Python und der scikit-learn-Bibliothek erarbeiten Sie sich alle Schritte, die für eine erfolgreiche Machine-Learning-Anwendung notwendig sind. Die Autoren Andreas Müller und Sarah Guido konzentrieren sich bei der Verwendung von Machine-Learning-Algorithmen auf die praktischen Aspekte statt auf die Mathematik dahinter. Wenn Sie zusätzlich mit den Bibliotheken NumPy und matplotlib vertraut sind, hilft Ihnen dies, noch mehr aus diesem Tutorial herauszuholen. Das Buch zeigt Ihnen: - grundlegende Konzepte und Anwendungen von Machine Learning - Vor- und Nachteile weit verbreiteter maschineller Lernalgorithmen - wie sich die von Machine Learning verarbeiteten Daten repräsentieren lassen und auf welche Aspekte der Daten Sie sich konzentrieren sollten - fortgeschrittene Methoden zur Auswertung von Modellen und zum Optimieren von Parametern - das Konzept von Pipelines, mit denen Modelle verkettet und Arbeitsabläufe gekapselt werden - Arbeitsmethoden für Textdaten, insbesondere textspezifische Verarbeitungstechniken - Möglichkeiten zur Verbesserung Ihrer Fähigkeiten in den Bereichen Machine Learning und Data Science Dieses Buch ist eine fantastische, super praktische Informationsquelle für jeden, der mit Machine Learning in Python starten möchte – ich wünschte nur, es hätte schon existiert, als ich mit scikit-learn anfing! Hanna Wallach, Senior Researcher, Microsoft Research

Methoden der Mathematischen Physik

Author: Richard Courant,David Hilbert

Publisher: Springer-Verlag

ISBN: 3642474349

Category: Mathematics

Page: N.A

View: 5726

Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.

Die technologische Singularität

Author: Murray Shanahan

Publisher: N.A

ISBN: 9783957574404

Category: Science

Page: 270

View: 1368

›Technologische Singularität‹ bezeichnet den Zeitpunkt, an dem von künstlicher Intelligenz gesteuerte Maschinen sich fortlaufend selbst so zu verbessern imstande sind, dass sie sich der Beherrschung durch Menschenhand entziehen. Der Robotikspezialist Murray Shanahan beschreibt die unterschiedlichen derzeit weltweit vorangetriebenen technologischen Entwicklungen, die zu einem solchen Ereignis führen können. Er führt auf verständliche Weise in die komplexen Forschungen ein, die unsere nächste Zukunft verändern werden. Aus der Perspektive eines Praktikers beschäftigt er sich mit der Frage, ob künstliche Intelligenz über Bewusstsein verfügen kann, und entwickelt moralische Ansätze zu einem verantwortlichen Umgang mit dieser zumeist als Katastrophenszenario gezeichneten Zukunftsfantasie.

Deep Learning. Das umfassende Handbuch

Grundlagen, aktuelle Verfahren und Algorithmen, neue Forschungsansätze

Author: Ian Goodfellow,Yoshua Bengio,Aaron Courville

Publisher: MITP-Verlags GmbH & Co. KG

ISBN: 3958457010

Category: Computers

Page: 912

View: 9284

• Mathematische Grundlagen für Machine und Deep Learning • Umfassende Behandlung zeitgemäßer Verfahren: tiefe Feedforward-Netze, Regularisierung, Performance-Optimierung sowie CNNs, Rekurrente und Rekursive Neuronale Netze • Zukunftsweisende Deep-Learning-Ansätze sowie von Ian Goodfellow neu entwickelte Konzepte wie Generative Adversarial Networks Deep Learning ist ein Teilbereich des Machine Learnings und versetzt Computer in die Lage, aus Erfahrungen zu lernen. Dieses Buch behandelt umfassend alle Aspekte, die für den Einsatz und die Anwendung von Deep Learning eine Rolle spielen: In Teil I erläutern die Autoren die mathematischen Grundlagen für Künstliche Intelligenz, Neuronale Netze, Machine Learning und Deep Learning. In Teil II werden die aktuellen in der Praxis genutzten Verfahren und Algorithmen behandelt. In Teil III geben die Autoren Einblick in aktuelle Forschungsansätze und zeigen neue zukunftsweisende Verfahren auf. Dieses Buch richtet sich an Studenten und alle, die sich in der Forschung mit Deep Learning beschäftigen sowie an Softwareentwickler und Informatiker, die Deep Learning für eigene Produkte oder Plattformen einsetzen möchten. Dabei werden Grundkenntnisse in Mathematik, Informatik und Programmierung vorausgesetzt.