Neural Networks for Complete Beginners

Introduction for Neural Network Programming

Author: Mark Smart

Publisher: Createspace Independent Publishing Platform

ISBN: 9781543268720

Category:

Page: 94

View: 1919

This book is an exploration of an artificial neural network. It has been created to suit even the complete beginners to artificial neural networks. The first part of the book is an overview of artificial neural networks so as to help the reader understand what they are. You will also learn the relationship between the neurons which make up the human brain and the artificial neurons. Artificial neural networks embrace the concept of learning which is common in human beings. This book guides you to understand how learning takes place in artificial neural networks. The back-propagation algorithm, which is used for training artificial neural networks, is discussed. The book also guides you through the architecture of an artificial neural network. The various types of artificial neural networks based on their architecture are also discussed. The book guides you on the necessary steps for one to build a neural network. The perception, which is a type of an artificial neural network, is explored, and you will explore how to implement one programmatically. The following topics are discussed in this book: -What is a Neural Network? -Learning in Neural Networks -The Architecture of Neural Networks -Building Neural Networks -The Perceptron

Neuronale Netze selbst programmieren

Ein verständlicher Einstieg mit Python

Author: Tariq Rashid

Publisher: O'Reilly

ISBN: 3960101031

Category: Computers

Page: 232

View: 7132

Neuronale Netze sind Schlüsselelemente des Deep Learning und der Künstlichen Intelligenz, die heute zu Erstaunlichem in der Lage sind. Sie sind Grundlage vieler Anwendungen im Alltag wie beispielsweise Spracherkennung, Gesichtserkennung auf Fotos oder die Umwandlung von Sprache in Text. Dennoch verstehen nur wenige, wie neuronale Netze tatsächlich funktionieren. Dieses Buch nimmt Sie mit auf eine unterhaltsame Reise, die mit ganz einfachen Ideen beginnt und Ihnen Schritt für Schritt zeigt, wie neuronale Netze arbeiten: - Zunächst lernen Sie die mathematischen Konzepte kennen, die den neuronalen Netzen zugrunde liegen. Dafür brauchen Sie keine tieferen Mathematikkenntnisse, denn alle mathematischen Ideen werden behutsam und mit vielen Illustrationen und Beispielen erläutert. Eine Kurzeinführung in die Analysis unterstützt Sie dabei. - Dann geht es in die Praxis: Nach einer Einführung in die populäre und leicht zu lernende Programmiersprache Python bauen Sie allmählich Ihr eigenes neuronales Netz mit Python auf. Sie bringen ihm bei, handgeschriebene Zahlen zu erkennen, bis es eine Performance wie ein professionell entwickeltes Netz erreicht. - Im nächsten Schritt tunen Sie die Leistung Ihres neuronalen Netzes so weit, dass es eine Zahlenerkennung von 98 % erreicht – nur mit einfachen Ideen und simplem Code. Sie testen das Netz mit Ihrer eigenen Handschrift und werfen noch einen Blick in das mysteriöse Innere eines neuronalen Netzes. - Zum Schluss lassen Sie das neuronale Netz auf einem Raspberry Pi Zero laufen. Tariq Rashid erklärt diese schwierige Materie außergewöhnlich klar und verständlich, dadurch werden neuronale Netze für jeden Interessierten zugänglich und praktisch nachvollziehbar.

Artificial Neural Networks

Concepts, Tools and Techniques Explained for Absolute Beginners

Author: François Duval

Publisher: Createspace Independent Publishing Platform

ISBN: 9781985134560

Category:

Page: 128

View: 2190

***** Buy now (Will soon return to $75.99 + Special Offer Below) ***** Free Kindle eBook for customers who purchase the print book from Amazon Are you thinking of learning more about Artificial Neural Network? This book has been written in layman's terms as an introduction to neural networks and their algorithms. Each algorithm is explained very easily for more understanding. Several Visual Illustrations and Examples Instead of tough math formulas, this book contains several graphs and images which detail all algorithms and their applications in all area of the real life. Why this book is different ? An Artificial Neural Network (ANN) is a computational model. It is based on the structure and functions of biological neural networks. It works like the way human (animal) brain processes information. It includes a large number of connected processing units called neurons that work together to process information. They also generate meaningful results from it. In this book, we will take you through the complete introduction to Artificial Neural Network, Artificial Neural Network Structure, layers of ANN, Applications, Algorithms, Tools and technology, Practical implementations and the benefits and limitations of ANN. This book takes a different approach that is based on providing simple examples of how ANN algorithms work, and building on those examples step by step to encompass the more complicated parts of the algorithms. Target Users The book designed for a variety of target audiences. The most suitable users would include: Beginners who want to approach ANN, but are too afraid of complex math to start Newbies in computer science techniques and ANN Professionals in data science and social sciences Professors, lecturers or tutors who are looking to find better ways to explain the content to their students in the simplest and easiest way Students and academicians, especially those focusing on neural networks and deep learning What's inside this book? What is Artificial Neural Network? Why Neural Networks? Major Variants of Artificial Neural Network Tools and Technologies Practical implementations Major NN projects Open sources resources Issues and Challenges Applications of ANN Deep Learning: What & Why? Our Future with Deep Learning Applied The Long-Term Vision of Deep Learning Glossary of Some Useful Terms in Neural Networks Frequently Asked Questions Q: Is this book for me and do I need programming experience? A: If you want to learn more about deep learning with practical applications, this book is for you. This book has been written in layman's terms as an introduction to neural networks and their algorithms. Each algorithm is explained very easily for more understanding. No coding experience is required. Some practical examples is presented with Python but it is not the major part of the book. Q: Can I loan this book to friends? A: Yes. Under Amazon's Kindle Book Lending program, you can lend this book to friends and family for a duration of 14 days. Q: Does this book include everything I need to become a Neural Networks expert? A: Unfortunately, no. This book is designed for readers taking their first steps in neural networks and further learning will be required beyond this book to master all aspects of neural networks. Q: Can I have a refund if this book is not fitted for me? A: Yes, Amazon refund you if you aren't satisfied, for more information about the amazon refund service please go to the amazon help platform. will also be happy to help you if you send us an email at [email protected]

Artificial Neural Networks

An Introduction

Author: Kevin L. Priddy,Paul E. Keller

Publisher: SPIE Press

ISBN: 9780819459879

Category: Technology & Engineering

Page: 165

View: 1975

This tutorial text provides the reader with an understanding of artificial neural networks (ANNs) and their application, beginning with the biological systems which inspired them, through the learning methods that have been developed and the data collection processes, to the many ways ANNs are being used today. The material is presented with a minimum of math (although the mathematical details are included in the appendices for interested readers), and with a maximum of hands-on experience. All specialized terms are included in a glossary. The result is a highly readable text that will teach the engineer the guiding principles necessary to use and apply artificial neural networks.

Machine Learning for Absolute Beginners

A Plain English Introduction

Author: Oliver Theobald

Publisher: Independently Published

ISBN: 9781549617218

Category: Computer algorithms

Page: 160

View: 1005

"The manner in which computers are now able to mimic human thinking to process information is rapidly exceeding human capabilities in everything from chess to picking the winner of a song contest. In the modern age of machine learning, computers do not strictly need to receive an 'input command' to perform a task, but rather 'input data'. From the input of data they are able to form their own decisions and take actions virtually as a human world. But given it is a machine, it can consider many more scenarios and execute far more complicated calculations to solve complex problems. This is the element that excites data scientists and machine learning engineers the most. The ability to solve complex problems never before attempted. This book will dive in to introduce machine learning, and is ideal for beginners starting out in machine learning."--page 4 of cover.

Neural Networks for Beginners

An Easy-To-Use Manual for Understanding Artificial Neural Network Programming

Author: Bob Story

Publisher: Createspace Independent Publishing Platform

ISBN: 9781548960292

Category:

Page: 56

View: 535

Discover How to Build Your Own Neural Network From Scratch...Even if You've Got Zero Math or Coding Skills! What seemed like a lame and unbelievable sci-fi movie a few decades ago is now a reality. Machines can finally think. Maybe not quite as complex as the human brain, but more than enough to make everyone's life a lot easier. Artificial neural networks, based on the neurons found in the human brain give machines a 'brain'. Patterned just like biological neurons, these software or hardware are a variety of the deep learning technology. With their help you can make your computer learn by feeding it data, which will then be generated as the output you desire. It is they to thank for the nanoseconds in which computers operate. It may be science, but it is not actually rocket science. Everyone can learn how to take advantage of the progressed technology of today, get inside the 'brain' of the computers, and train them to perform the desired operations. They have been used in many different industries, and you can rest assured that you will find the perfect purpose for your own neural network. The best part about this book is that it doesn't require a college degree. Your high school math skills are quite enough for you to get a good grasp of the basics and learn how to build an artificial neural network. From non-mathematical explanations to teaching you the basic math behind the ANNs and training you how to actually program one, this book is the most helpful guide you will ever find. Carefully designed for you, the beginner, this guide will help you become a proud owner of a neural network in no time. Here's a Sneak Peak to What You'll Discover Inside this Book: The 6 unique benefits of neural networks The difference between biological and artificial neural networks And inside look into ANN (Artificial Neural Networks) The industries ANN is used in How to teach neural networks to perform specific commands The different types of learning modalities (e.g. Hebbian Learning, unsupervised learning, supervised learning etc.) The architecture of ANN Basic math behind artificial neurons Simple networks for pattern classification The Hebb Rule How to build a simple neural network code The backpropogation algorithm and how to program it And much, much more! There's a lot more inside this book we'll cover, so be prepared. I've made to lucidly explain everything I cover so that there's zero confusion! Download this book today and discover all the intricate details of building your very own Neural Network

Theorie der neuronalen Netze

Eine systematische Einführung

Author: Raul Rojas

Publisher: Springer-Verlag

ISBN: 3642612318

Category: Computers

Page: 446

View: 3663

Neuronale Netze sind ein Berechenbarkeitsparadigma, das in der Informatik zunehmende Beachtung findet. In diesem Buch werden theoretische Ansätze und Modelle, die in der Literatur verstreut sind, zu einer modellübergreifenden Theorie der künstlichen neuronalen Netze zusammengefügt. Mit ständigem Blick auf die Biologie wird - ausgehend von einfachsten Netzen - gezeigt, wie sich die Eigenschaften der Modelle verändern, wenn allgemeinere Berechnungselemente und Netztopologien eingeführt werden. Jedes Kapitel enthält Beispiele und ist ausführlich illustriert und durch bibliographische Anmerkungen abgerundet. Das Buch richtet sich an Leser, die sich einen Überblick verschaffen oder vorhandene Kenntnisse vertiefen wollen. Es ist als Grundlage für Neuroinformatikvorlesungen an deutschsprachigen Universitäten geeignet.

Grundlagen zur Neuroinformatik und Neurobiologie

The Computational Brain in deutscher Sprache

Author: Patricia S. Churchland,Terrence J. Sejnowski

Publisher: Springer-Verlag

ISBN: 3322868214

Category: Technology & Engineering

Page: 702

View: 3970

The Computational Brain, das außergewöhnliche Buch über vergleichende Forschung in den Bereichen von menschlichem Gehirn und neuesten Möglichkeiten der Computertechnologie, liegt hiermit erstmals in deutscher Sprache vor. Geschrieben von einem führenden Forscherteam in den USA, ist es eine Fundgrube für alle, die wissen wollen, was der Stand der Wissenschaft auf diesem Gebiet ist. Die Autoren führen die Bereiche der Neuroinformatik und Neurobiologie mit gut ausgesuchten Beispielen und der gebotenen Hintergrundinformation gekonnt zusammen. Das Buch wird somit nicht nur dem Fachwissenschaftler sondern auch dem interdisziplinären Interesse des Informatikers und des Biologen auf eine hervorragende Weise gerecht. Übersetzt wurde das Buch von Prof. Dr. Steffen Hölldobler und Dipl.-Biol. Claudia Hölldobler, einem Informatiker und einer Biologin. Rezension in Spektrum der Wissenschaft nr. 10, S. 122 f. im Oktober 1997 (...) Die 1992 erschienene amerikanische Originalausgabe des vorliegenden Werkes ist so erfolgreich, daß man bereits von einem Klassiker reden kann. (...) (...) ....ist das Buch sehr zu empfehlen. In Verbindung von Neurobiologie und Neuroinformatik konkurrenzlos, vermittelt es einiges von der Faszination theoretischer Hirnforschung, die auch in Deutschland zunehmend mehr Wissenschaftler in ihren Bann schlägt. Rezension erschienen in: Computer Spektrum 3/1997, S. 2 (...)Das Buch wird somit nicht nur dem Fachwissenschaftler, sondern auch den interdisziplinären Interesse des Informatikers und des Biologen auf eine hervorragende Weise gerecht(...)

Statistik-Workshop für Programmierer

Author: Allen B. Downey

Publisher: O'Reilly Germany

ISBN: 3868993436

Category: Computers

Page: 160

View: 7177

Wenn Sie programmieren können, beherrschen Sie bereits Techniken, um aus Daten Wissen zu extrahieren. Diese kompakte Einführung in die Statistik zeigt Ihnen, wie Sie rechnergestützt, anstatt auf mathematischem Weg Datenanalysen mit Python durchführen können. Praktischer Programmier-Workshop statt grauer Theorie: Das Buch führt Sie anhand eines durchgängigen Fallbeispiels durch eine vollständige Datenanalyse -- von der Datensammlung über die Berechnung statistischer Kennwerte und Identifikation von Mustern bis hin zum Testen statistischer Hypothesen. Gleichzeitig werden Sie mit statistischen Verteilungen, den Regeln der Wahrscheinlichkeitsrechnung, Visualisierungsmöglichkeiten und vielen anderen Arbeitstechniken und Konzepten vertraut gemacht. Statistik-Konzepte zum Ausprobieren: Entwickeln Sie über das Schreiben und Testen von Code ein Verständnis für die Grundlagen von Wahrscheinlichkeitsrechnung und Statistik: Überprüfen Sie das Verhalten statistischer Merkmale durch Zufallsexperimente, zum Beispiel indem Sie Stichproben aus unterschiedlichen Verteilungen ziehen. Nutzen Sie Simulationen, um Konzepte zu verstehen, die auf mathematischem Weg nur schwer zugänglich sind. Lernen Sie etwas über Themen, die in Einführungen üblicherweise nicht vermittelt werden, beispielsweise über die Bayessche Schätzung. Nutzen Sie Python zur Bereinigung und Aufbereitung von Rohdaten aus nahezu beliebigen Quellen. Beantworten Sie mit den Mitteln der Inferenzstatistik Fragestellungen zu realen Daten.

Machine Learning for Absolute Beginners: an Absolute Beginner’s Guide to Learning and Understanding Machine Learning Successfully

Author: Ryan Hill

Publisher: Ryan Hill

ISBN: 1386263052

Category: Computers

Page: N.A

View: 7402

★★★ MACHINE LEARNING FOR ABSOLUTE BEGINNERS ★★★ Do you want to know about Machine Learning even as a beginner? You have come to the right place Machine learning is one of the hottest topics in this century - for good reasons. A neural network is often mentioned but covers only a small part of machine learning. There is much more to explore. There are a lot of interested people out there but many do not know where to start. The difficult question basically is how to start actually learning it? Especially beginners might get discouraged because of statistics and math which is an integral part of machine learning. None the less you do not need to be a math expert to apply machine learning. This machine learning course is here to show you why. Instead of telling you all the statistics and math behind the Algorithms, I prefer to give you a much more hands on approach. At the end of the day there's only one thing that really counts - THE RESULT. What you will learn Introduction to Machine Learning What is Machine Learning… And why should we care? The 6 Steps of Machine Learning What neural networks have to do with machine learning What neural networks have to do with deep learning? What machine learning algorithms can do The different machine learning applications and their disadvantages and advantages What machine learning have in store for us? How Machine Learning is Fighting Cancer Who is the target audience? Beginners in machine learning People who like a hands-on approach and not only watching People who prefer practice instead of theory All people who want to dive into one of the hottest topics out there but do not know where to start You want to take advantage of the data driven opportunity ahead ★★★ Don't wait any longer! Scroll up and click the BUY NOW button to begin the journey of learning machine learning even as an absolute ML beginner! ★★★

Deep Learning for Beginners: A Comprehensive Introduction of Deep Learning Fundamentals for Beginners to Understanding Frameworks, Neural Networks, Large Datasets, and Creative Applications with Ease

Author: Steven Cooper

Publisher: Steven Cooper

ISBN: 1386583677

Category: Computers

Page: N.A

View: 8969

☆★The Best Deep Learning Book For Beginners★☆ If you are looking for a complete beginners guide to learn deep learning with examples, in just a few hours, then you need to continue reading. This book delves into the basics of deep learning for those who are enthusiasts concerning all things machine learning and artificial intelligence. For those who have seen movies which show computer systems taking over the world like, Terminator, or benevolent systems that watch over the population, i.e. Person of Interest, this should be right up your alley. This book will give you the basics of what deep learning entails. That means frameworks used by coders and significant components and tools used in deep learning, that enable facial recognition, speech recognition, and virtual assistance. Yes, deep learning provides the tools through which systems like Siri became possible. ★★ Grab your copy today and learn ★★ ♦ Deep learning utilizes frameworks which allow people to develop tools which are able to offer better abstraction, along with simplification of hard programming issues. TensorFlow is the most popular tool and is used by corporate giants such as Airbus, Twitter, and even Google. ♦ The book illustrates TensorFlow and Caffe2 as the prime frameworks that are used for development by Google and Facebook. Facebook illustrates Caffe2 as one of the lightweight and modular deep learning frameworks, though TensorFlow is the most popular one, considering it has a lot of popularity, and thus, a big forum, which allows for assistance on main problems. ♦ The book considers several components and tools of deep learning such as the neural networks; CNNs, RNNs, GANs, and auto-encoders. These algorithms create the building blocks which propel deep learning and advance it. ♦ The book also considers several applications, including chatbots and virtual assistants, which have become the main focus for deep learning into the future, as they represent the next frontier in information gathering and connectivity. The Internet of Things is also represented here, as deep learning allows for integration of various systems via an artificial intelligence system, which is already being used for the home and car functions. ♦ And much more... The use of data science adds a lot of value to businesses, and we will continue to see the need for data scientists grow. This book is probably one of the best books for beginners. It's a step-by-step guide for any person who wants to start learning deep learning and artificial intelligence from scratch. When data science can reduce spending costs by billions of dollars in the communication industry, why wait to jump in? If you want to get started on deep learning and the concepts that run artificial technologies, don't wait any longer. Scroll up and click the buy now button to get this book today!

TensorFlow für Dummies

Author: Matthew Scarpino

Publisher: John Wiley & Sons

ISBN: 3527818960

Category: Computers

Page: 324

View: 2238

TensorFlow ist Googles herausragendes Werkzeug für das maschinelle Lernen, und dieses Buch macht es zugänglich, selbst wenn Sie bisher wenig über neuronale Netze und Deep Learning wissen. Sie erfahren, auf welchen Prinzipien TensorFlow basiert und wie Sie mit TensorFlow Anwendungen schreiben. Gleichzeitig lernen Sie die Konzepte des maschinellen Lernens kennen. Wenn Sie Softwareentwickler sind und TensorFlow in Zukunft einsetzen möchten, dann ist dieses Buch der richtige Einstieg für Sie. Greifen Sie auch zu, wenn Sie einfach mehr über das maschinelle Lernen erfahren wollen.

Maschinelles Lernen Für Absolute Anfänger: Zweite Ausgabe

Author: Oliver Theobald

Publisher: N.A

ISBN: 9781728711843

Category: Education

Page: 150

View: 4364

Sind Sie bereit, eine GPU-Instanz zu entwickeln und Petabyte von Daten zu durchsuchen? Möchten Sie Ihrem LinkedIn-Profil "Maschinelles Lernen" hinzufügen? Nun, warten Sie mal.... Bevor Sie sich auf den Weg in die Welt des maschinellen Lernens machen, gibt es eine wichtige Theorie und statistische Prinzipien, die Sie zunächst verstehen müssen. In dem Buch "Maschinelles Lernen für absolute Anfänger" lernen Sie die Grundlagen des maschinellen Lernens kennen und lernen, Ihr eigenes Vorhersagemodell mit Hilfe eines Immobiliendatensatzes zu kodieren, um Immobilienpreise vorherzusagen. Dieses Buch wurde für absolute Anfänger geschrieben und konzipiert. Das bedeutet, dass keine Programmierkenntnisse erforderlich sind. Wo Algorithmen eingeführt werden, werden eindeutige Erklärungen und visuelle Beispiele hinzugefügt, um es einfach und ansprechend zu gestalten, so dass Sie zu Hause damit weitermachen können. Denken Sie daran, dass dieses Buch erstmalig 2017 auf Englisch (Machine Learning for Absolute Beginners) erschienen ist und 2018 ins Deutsche übersetzt wurde.

Machine Learning For Absolute Beginners A Step by Step guide Algorithms For Supervised and Unsupervised Learning With Real World Applications

Author: Raymond Kazuya

Publisher: Raymond Kazuya

ISBN: 1773830031

Category: Education

Page: N.A

View: 2954

Machines can LEARN ?!?! Machine learning occurs primarily through the use of " algorithms" and other elaborate procedures. Whether you're a novice, intermediate or expert this book will teach you all the ins, outs and everything you need to know about machine learning. Instead of spending hundreds or even thousands of dollars on courses/materials why not read this book instead? Its a worthwhile read and the most valuable investment you can make for yourself. What You'll Learn - Supervised Learning -Unsupervised Learning -Reinforced Learning - Algorithms -Decision Tree -Random Forest -Neural Networks -Python -Deep Learning -And much, much more! ☆★☆ Grab your copy now! ☆★☆

Python Artificial Intelligence Projects for Beginners

Get up and running with Artificial Intelligence using 8 smart and exciting AI applications

Author: Dr. Joshua Eckroth

Publisher: Packt Publishing Ltd

ISBN: 1789538246

Category: Computers

Page: 162

View: 9409

Build smart applications by implementing real-world artificial intelligence projects Key Features Explore a variety of AI projects with Python Get well-versed with different types of neural networks and popular deep learning algorithms Leverage popular Python deep learning libraries for your AI projects Book Description Artificial Intelligence (AI) is the newest technology that’s being employed among varied businesses, industries, and sectors. Python Artificial Intelligence Projects for Beginners demonstrates AI projects in Python, covering modern techniques that make up the world of Artificial Intelligence. This book begins with helping you to build your first prediction model using the popular Python library, scikit-learn. You will understand how to build a classifier using an effective machine learning technique, random forest, and decision trees. With exciting projects on predicting bird species, analyzing student performance data, song genre identification, and spam detection, you will learn the fundamentals and various algorithms and techniques that foster the development of these smart applications. In the concluding chapters, you will also understand deep learning and neural network mechanisms through these projects with the help of the Keras library. By the end of this book, you will be confident in building your own AI projects with Python and be ready to take on more advanced projects as you progress What you will learn Build a prediction model using decision trees and random forest Use neural networks, decision trees, and random forests for classification Detect YouTube comment spam with a bag-of-words and random forests Identify handwritten mathematical symbols with convolutional neural networks Revise the bird species identifier to use images Learn to detect positive and negative sentiment in user reviews Who this book is for Python Artificial Intelligence Projects for Beginners is for Python developers who want to take their first step into the world of Artificial Intelligence using easy-to-follow projects. Basic working knowledge of Python programming is expected so that you’re able to play around with code