Numerical Methods for Engineers and Scientists, Second Edition,

Author: Joe D. Hoffman,Steven Frankel

Publisher: CRC Press

ISBN: 9780824704438

Category: Mathematics

Page: 840

View: 3359

Emphasizing the finite difference approach for solving differential equations, the second edition of Numerical Methods for Engineers and Scientists presents a methodology for systematically constructing individual computer programs. Providing easy access to accurate solutions to complex scientific and engineering problems, each chapter begins with objectives, a discussion of a representative application, and an outline of special features, summing up with a list of tasks students should be able to complete after reading the chapter- perfect for use as a study guide or for review. The AIAA Journal calls the book "...a good, solid instructional text on the basic tools of numerical analysis."

Numerical Methods for Scientists and Engineers

Author: Richard Hamming

Publisher: Courier Corporation

ISBN: 0486134822

Category: Mathematics

Page: 752

View: 8216

This inexpensive paperback edition of a groundbreaking text stresses frequency approach in coverage of algorithms, polynomial approximation, Fourier approximation, exponential approximation, and other topics. Revised and enlarged 2nd edition.

Numerical Analysis for Engineers and Scientists

Author: G. Miller

Publisher: Cambridge University Press

ISBN: 1107021081

Category: Mathematics

Page: 581

View: 2069

Graduate-level introduction balancing theory and application. Provides full coverage of classical methods with many practical examples and demonstration programs.

Numerical methods for engineers and scientists

an introduction with applications using Matlab

Author: Amos Gilat,Vish Subramaniam

Publisher: John Wiley & Sons Inc

ISBN: 9780471734406

Category: Computers

Page: 459

View: 5906

A clear and concise guide to numerical methods and their application Mastering numerical methods has never been easier than with Gilat/Subramaniam\'s Numerical Methods For Engineers and Scientists: An Introduction with Applications Using MATLAB(r). Uniquely accessible and concise, this book takes an innovative approach that integrates the study of numerical methods with hands-on programming practice using the popular MATLAB environment to solve realistic problems in engineering and science. Ideal for both students and professionals who would like to become more adept at numerical methods, Numerical Methods For Engineers and Scientists familiarizes you with: * The mathematical background and fundamentals of numerical methods * Solving nonlinear equations * Solving a system of linear equations * Eigenvalues and Eigenvectors * Function approximation, curve fitting, and interpolation * Differentiation * Integration * First-order and higher-order ODEs * Initial and boundary value problems Using MATLAB\'s built-in functions as tools for solving problems, you will practice applying numerical methods for analysis of real-world problems. All the information is presented in manageable, step-by-step fashion, supported by a large number of annotated examples and end-of-chapter problems. Lucid, carefully structured, and flexibly designed to fulfill a wide range of academic and practical needs, this book will help you develop the skills in numerical methods that will serve you well as a practicing engineer. About the Authors: Amos Gilat, Ph.D., is Professor of Mechanical Engineering at The Ohio State University. Dr. Gilat\'s main research interests are in plasticity, specifically, in developing experimental techniques for testing materials over a wide range of strain rates and temperatures and in investigating constitutive relations for viscoplasticity. Dr. Gilat\'s research has been supported by the National Science Foundation, NASA, Department of Energy, Department of Defense, and various industries. Vish Subramaniam, Ph.D., is Professor of Mechanical Engineering & Chemical Physics at The Ohio State University. Dr. Subramaniam\'s main research interests are in plasma and laser physics and processes, particularly those that involve non-equilibrium phenomena. Dr. Subramaniam\'s research is both experimental and computational, and has been supported by the Department of Defense, National Science Foundation, and numerous industries.

Numerical Methods for Engineers and Scientists Using MATLAB®

Author: Ramin S. Esfandiari

Publisher: CRC Press

ISBN: 1466585692

Category: Mathematics

Page: 550

View: 611

Designed to benefit scientific and engineering applications, Numerical Methods for Engineers and Scientists Using MATLAB® focuses on the fundamentals of numerical methods while making use of MATLAB software. The book introduces MATLAB early on and incorporates it throughout the chapters to perform symbolic, graphical, and numerical tasks. The text covers a variety of methods from curve fitting to solving ordinary and partial differential equations. Provides fully worked-out examples showing all details Confirms results through the execution of the user-defined function or the script file Executes built-in functions for re-confirmation, when available Generates plots regularly to shed light on the soundness and significance of the numerical results Created to be user-friendly and easily understandable, Numerical Methods for Engineers and Scientists Using MATLAB® provides background material and a broad introduction to the essentials of MATLAB, specifically its use with numerical methods. Building on this foundation, it introduces techniques for solving equations and focuses on curve fitting and interpolation techniques. It addresses numerical differentiation and integration methods, presents numerical methods for solving initial-value and boundary-value problems, and discusses the matrix eigenvalue problem, which entails numerical methods to approximate a few or all eigenvalues of a matrix. The book then deals with the numerical solution of partial differential equations, specifically those that frequently arise in engineering and science. The book presents a user-defined function or a MATLAB script file for each method, followed by at least one fully worked-out example. When available, MATLAB built-in functions are executed for confirmation of the results. A large set of exercises of varying levels of difficulty appears at the end of each chapter. The concise approach with strong, up-to-date MATLAB integration provided by this book affords readers a thorough knowledge of the fundamentals of numerical methods utilized in various disciplines.

Numerical Methods for Engineers and Scientists

Author: J. N. Sharma

Publisher: Alpha Science Int'l Ltd.

ISBN: 9781842651629

Category: Mathematics

Page: 336

View: 1549

The desire for numerical answers to applied problems has increased manifold with the advances made in various branches of science and engineering and rapid development of high-speed digital computers. Although numerical methods have always been useful, their role in the present day scientific computations and research is of fundamental importance. numerous distinguishing features. The contents of the book have been organized in a logical order and the topics are discussed in a systematic manner. concepts; algorithms and numerous exercises at the end of each chapter; helps students in problem solving both manually and through computer programming; an exhaustive bibliography; and an appendix containing some important and useful iterative methods for the solution of nonlinear complex equations.


Author: Rao, K. Sankara

Publisher: PHI Learning Pvt. Ltd.

ISBN: 8193593898

Category: Mathematics

Page: 440

View: 1270

With a clarity of approach, this easy-to-comprehend book gives an in-depth analysis of the topics under Numerical Methods, in a systematic manner. Primarily intended for the undergraduate and postgraduate students in many branches of engineering, physics, mathematics and all those pursuing Bachelors/Masters in computer applications. Besides students, those appearing for competitive examinations, research scholars and professionals engaged in numerical computation will also be benefited by this book. The fourth edition of this book has been updated by adding a current topic of interest on Finite Element Methods, which is a versatile method to solve numerically, several problems that arise in engineering design, claiming many advantages over the existing methods. Besides, it introduces the basics in computing, discusses various direct and iterative methods for solving algebraic and transcendental equations and a system of non-linear equations, linear system of equations, matrix inversion and computation of eigenvalues and eigenvectors of a matrix. It also provides a detailed discussion on Curve fitting, Interpolation, Numerical Differentiation and Integration besides explaining various single step and predictor–corrector methods for solving ordinary differential equations, finite difference methods for solving partial differential equations, and numerical methods for solving Boundary Value Problems. Fourier series approximation to a real continuous function is also presented. The text is augmented with a plethora of examples and solved problems along with well-illustrated figures for a practical understanding of the subject. Chapter-end exercises with answers and a detailed bibliography have also been provided. NEW TO THIS EDITION • Includes two new chapters on the basic concepts of the Finite Element Method and Coordinate Systems in Finite Element Methods with Applications in Heat Transfer and Structural Mechanics. • Provides more than 350 examples including numerous worked-out problems. • Gives detailed solutions and hints to problems under Exercises.

Applied Numerical Methods with MATLAB for Engineers and Scientists

Author: Steven C. Chapra

Publisher: N.A

ISBN: 9780071086189

Category: MATLAB

Page: 653

View: 8440

Steven Chapra's Applied Numerical Methods with MATLAB, third edition, is written for engineering and science students who need to learn numerical problem solving. Theory is introduced to inform key concepts which are framed in applications and demonstrated using MATLAB. The book is designed for a one-semester or one-quarter course in numerical methods typically taken by undergraduates. The third edition features new chapters on Eigenvalues and Fourier Analysis and is accompanied by an extensive set of m-files and instructor materials.

Numerical Analysis for Applied Science

Author: Myron B. Allen,Eli L. Isaacson

Publisher: John Wiley & Sons

ISBN: 1118030273

Category: Mathematics

Page: 492

View: 314

Written for graduate students in applied mathematics, engineering and science courses, the purpose of this book is to present topics in "Numerical Analysis" and "Numerical Methods." It will combine the material of both these areas as well as special topics in modern applications. Included at the end of each chapter are a variety of theoretical and computational exercises.

Numerical Methods for Engineers, Second Edition

Author: D. Vaughan Griffiths,I.M. Smith

Publisher: CRC Press

ISBN: 9781584884019

Category: Mathematics

Page: 496

View: 5193

Although pseudocodes, Mathematica®, and MATLAB® illustrate how algorithms work, designers of engineering systems write the vast majority of large computer programs in the Fortran language. Using Fortran 95 to solve a range of practical engineering problems, Numerical Methods for Engineers, Second Edition provides an introduction to numerical methods, incorporating theory with concrete computing exercises and programmed examples of the techniques presented. Covering a wide range of numerical applications that have immediate relevancy for engineers, the book describes forty-nine programs in Fortran 95. Many of the programs discussed use a sub-program library called nm_lib that holds twenty-three subroutines and functions. In addition, there is a precision module that controls the precision of calculations. Well-respected in their field, the authors discuss a variety of numerical topics related to engineering. Some of the chapter features include... The numerical solution of sets of linear algebraic equations Roots of single nonlinear equations and sets of nonlinear equations Numerical quadrature, or numerical evaluation of integrals An introduction to the solution of partial differential equations using finite difference and finite element approaches Describing concise programs that are constructed using sub-programs wherever possible, this book presents many different contexts of numerical analysis, forming an excellent introduction to more comprehensive subroutine libraries such as the numerical algorithm group (NAG).



Publisher: PHI Learning Pvt. Ltd.

ISBN: 9788120332171

Category: Computers

Page: 368

View: 6699

Primarily written as a textbook, this third edition provides a complete course on numerical methods for undergraduate students in all branches of engineering, postgraduate students in mathematics and physics, and students pursuing courses in Master of Computer Applications (MCA). Besides students, those appearing for competitive examinations, research scholars and professionals engaged in numerical computations, will treasure this edition for its in-depth analysis, systematic treatment and clarity of approach. The third edition has been updated with new material comprising new methods and concepts and additional chapters on Boundary Value Problems and Approximation of Functions. It introduces the basics in computing, stresses on errors in computation, discusses various direct and iterative methods for solving algebraic and transcendental equations and a method for solving a system of nonlinear equations, linear system of equations, matrix inversion and computation of eigenvalues and eigenvectors of a matrix. The book provides a detailed discussion on curve fitting, interpolation and cubic spline interpolation, numerical differentiation and integration. It also presents, various single step and predictor–corrector methods for solving ordinary differential equations, finite difference methods for solving partial differential equations with the concepts of truncation error and stability. Finally, it concludes with a treatment of numerical methods for solving boundary value problems, least squares, Chebyshev, Pade polynomial approximations and Fourier series approximation to a real continuous function. KEY FEATURES  Provides altogether about 300 examples, of which about 125 are worked-out examples.  Gives detailed hints and solutions to examples under Exercises.

Numerical Methods for Engineers and Scientists, 3rd Edition

Third Edition

Author: Amos Gilat

Publisher: Wiley Global Education

ISBN: 1118803043

Category: Technology & Engineering

Page: 576

View: 2286

Numerical Methods for Engineers and Scientists, 3rd Edition provides engineers with a more concise treatment of the essential topics of numerical methods while emphasizing MATLAB use. The third edition includesÊa new chapter, with all new content,Êon Fourier Transform and aÊnew chapter on Eigenvalues (compiled from existingÊSecond EditionÊcontent).ÊThe focus is placed on the use of anonymous functions instead of inline functions and the uses of subfunctions and nested functions. This updated edition includes 50% new or updated Homework Problems, updated examples, helpingÊengineers test their understanding and reinforce key concepts.

Numerical Analysis for Scientists and Engineers

Theory and C Programs

Author: Madhumangal Pal

Publisher: Alpha Science International Limited


Category: Mathematics

Page: 654

View: 8704

Numerical Analysis for Scientists and Engineers develops the subject gradually by illustrating several examples for both the beginners and the advanced readers using very simple language. The classical and recently developed numerical methods are derived from mathematical and computational points of view. Different aspects of errors in computation are discussed in detailed. Some finite difference operators and different techniques to solve difference equations are presented here. Various types of interpolation, including cubic-spline, methods and their applications are introduced. Direct and iterative methods for solving algebraic and transcendental equations, linear system of equations, evaluation of determinant and matrix inversion, computation of eigenvalues and eigenvectors of a matrix are well discussed in this book. Detailed concept of curve fitting and function approximation, differentiation and integration (including Monte Carlo method) are given. Many numerical methods to solve ordinary and partial differential equations with their stability and analysis are also presented. The algorithms and programs in C are designed for most of the numerical methods.


Author: Carl Friedrich Gauss,Christian Ludwig Gerling

Publisher: Georg Olms Verlag

ISBN: 9783487406442


Page: N.A

View: 2252

Boundary Element Methods for Engineers and Scientists

An Introductory Course with Advanced Topics

Author: Lothar Gaul,Martin Kögl,Marcus Wagner

Publisher: Springer Science & Business Media

ISBN: 3662051362

Category: Mathematics

Page: 488

View: 6240

Over the past decades, the Boundary Element Method has emerged as a ver satile and powerful tool for the solution of engineering problems, presenting in many cases an alternative to the more widely used Finite Element Method. As with any numerical method, the engineer or scientist who applies it to a practical problem needs to be acquainted with, and understand, its basic principles to be able to apply it correctly and be aware of its limitations. It is with this intention that we have endeavoured to write this book: to give the student or practitioner an easy-to-understand introductory course to the method so as to enable him or her to apply it judiciously. As the title suggests, this book not only serves as an introductory course, but also cov ers some advanced topics that we consider important for the researcher who needs to be up-to-date with new developments. This book is the result of our teaching experiences with the Boundary Element Method, along with research and consulting activities carried out in the field. Its roots lie in a graduate course on the Boundary Element Method given by the authors at the university of Stuttgart. The experiences gained from teaching and the remarks and questions of the students have contributed to shaping the 'Introductory course' (Chapters 1-8) to the needs of the stu dents without assuming a background in numerical methods in general or the Boundary Element Method in particular.

Numerical Methods for Engineers

Author: Steven C. Chapra,Raymond P. Canale

Publisher: N.A

ISBN: 9789814670876

Category: Technology & Engineering

Page: 970

View: 8759

Numerical Methods for Engineers retains the instructional techniques that have made the text so successful. Chapra and Canale's unique approach opens each part of the text with sections called "Motivation" "Mathematical Background" and "Orientation". Each part closes with an "Epilogue" containing "Trade-Offs" "Important Relationships and Formulas" and "Advanced Methods and Additional References". Much more than a summary the Epilogue deepens understanding of what has been learned and provides a peek into more advanced methods. Numerous new or revised problems are drawn from actual engineering practice. The expanded breadth of engineering disciplines covered is especially evident in these exercises which now cover such areas as biotechnology and biomedical engineering. Excellent new examples and case studies span all areas of engineering giving students a broad exposure to various fields in engineering.McGraw-Hill Education's Connect is also available as an optional add on item. Connect is the only integrated learning system that empowers students by continuously adapting to deliver precisely what they need when they need it how they need it so that class time is more effective. Connect allows the professor to assign homework quizzes and tests easily and automatically grades and records the scores of the student's work. Problems are randomized to prevent sharing of answers an may also have a "multi-step solution" which helps move the students' learning along if they experience difficulty.

Numerical Methods for Mathematics, Science, and Engineering

Author: John H. Mathews

Publisher: N.A

ISBN: 9780136249900

Category: Mathematics

Page: 646

View: 6054

Provides an introduction to numerical analysis, with a particular emphasis on why numerical methods work and what their limitations are. In a straightforward presentation, the book shows readers how the mathematics of calculus and linear algebra are inplemented in computer algorithms.