Layer-Adapted Meshes for Reaction-Convection-Diffusion Problems

Author: Torsten Linß

Publisher: Springer

ISBN: 3642051340

Category: Mathematics

Page: 326

View: 2838

This is a book on numerical methods for singular perturbation problems – in part- ular, stationary reaction-convection-diffusion problems exhibiting layer behaviour. More precisely, it is devoted to the construction and analysis of layer-adapted meshes underlying these numerical methods. Numerical methods for singularly perturbed differential equations have been studied since the early 1970s and the research frontier has been constantly - panding since. A comprehensive exposition of the state of the art in the analysis of numerical methods for singular perturbation problems is [141] which was p- lished in 2008. As that monograph covers a big variety of numerical methods, it only contains a rather short introduction to layer-adapted meshes, while the present book is exclusively dedicated to that subject. An early important contribution towards the optimisation of numerical methods by means of special meshes was made by N.S. Bakhvalov [18] in 1969. His paper spawned a lively discussion in the literature with a number of further meshes - ing proposed and applied to various singular perturbation problems. However, in the mid 1980s, this development stalled, but was enlivened again by G.I. Shishkin’s proposal of piecewise-equidistant meshes in the early 1990s [121,150]. Because of their very simple structure, they are often much easier to analyse than other meshes, although they give numerical approximations that are inferior to solutions on c- peting meshes. Shishkin meshes for numerous problems and numerical methods have been studied since and they are still very much in vogue.

Finite Element Methods for Flow Problems

Author: Jean Donea,Antonio Huerta

Publisher: John Wiley & Sons

ISBN: 9780471496663

Category: Science

Page: 362

View: 2728

In recent years there have been significant developments in the development of stable and accurate finite element procedures for the numerical approximation of a wide range of fluid mechanics problems. Taking an engineering rather than a mathematical bias, this valuable reference resource details the fundamentals of stabilised finite element methods for the analysis of steady and time-dependent fluid dynamics problems. Organised into six chapters, this text combines theoretical aspects and practical applications and offers coverage of the latest research in several areas of computational fluid dynamics. * Coverage includes new and advanced topics unavailable elsewhere in book form * Collection in one volume of the widely dispersed literature reporting recent progress in this field * Addresses the key problems and offers modern, practical solutions Due to the balance between the concise explanation of the theory and the detailed description of modern practical applications, this text is suitable for a wide audience including academics, research centres and government agencies in aerospace, automotive and environmental engineering.

Numerical Computation of Internal and External Flows: Computational methods for inviscid and viscous flows

Author: Ch Hirsch

Publisher: John Wiley & Sons

ISBN: 9780471923510

Category: Fluid dynamics

Page: 691

View: 8261

This is the second of two volumes which together provide a comprehensive account of the numerical computation of internal and external flows. Volume 1 is concerned with descriptions of the methods involved. This second volume complements it by dealing with the application of computational methods to the problems of fluid dynamics. The coverage is comprehensive, including discussion of the equations used and the circumstances for which they are suitable, the numerical techniques used and their solution, and methods for producing computer programs.

Computational Fluid Dynamics

An Introduction

Author: John Wendt

Publisher: Springer Science & Business Media

ISBN: 3540850562

Category: Technology & Engineering

Page: 332

View: 5303

Computational Fluid Dynamics: An Introduction grew out of a von Karman Institute (VKI) Lecture Series by the same title ?rst presented in 1985 and repeated with modi?cations every year since that time. The objective, then and now, was to present the subject of computational ?uid dynamics (CFD) to an audience unfamiliar with all but the most basic numerical techniques and to do so in such a way that the practical application of CFD would become clear to everyone. A second edition appeared in 1995 with updates to all the chapters and when that printing came to an end, the publisher requested that the editor and authors consider the preparation of a third edition. Happily, the authors received the request with enthusiasm. The third edition has the goal of presenting additional updates and clari?cations while preserving the introductory nature of the material. The book is divided into three parts. John Anderson lays out the subject in Part I by ?rst describing the governing equations of ?uid dynamics, concentrating on their mathematical properties which contain the keys to the choice of the numerical approach. Methods of discretizing the equations are discussed and transformation techniques and grids are presented. Two examples of numerical methods close out this part of the book: source and vortex panel methods and the explicit method. Part II is devoted to four self-contained chapters on more advanced material. Roger Grundmann treats the boundary layer equations and methods of solution.

Common Rail System for GDI Engines

Modelling, Identification, and Control

Author: Giovanni Fiengo,Alessandro di Gaeta,Angelo Palladino,Veniero Giglio

Publisher: Springer Science & Business Media

ISBN: 1447144686

Category: Technology & Engineering

Page: 81

View: 3689

Progressive reductions in vehicle emission requirements have forced the automotive industry to invest in research and development of alternative control strategies. Continual control action exerted by a dedicated electronic control unit ensures that best performance in terms of pollutant emissions and power density is married with driveability and diagnostics. Gasoline direct injection (GDI) engine technology is a way to attain these goals. This brief describes the functioning of a GDI engine equipped with a common rail (CR) system, and the devices necessary to run test-bench experiments in detail. The text should prove instructive to researchers in engine control and students are recommended to this brief as their first approach to this technology. Later chapters of the brief relate an innovative strategy designed to assist with the engine management system; injection pressure regulation for fuel pressure stabilization in the CR fuel line is proposed and validated by experiment. The resulting control scheme is composed of a feedback integral action and a static model-based feed-forward action, the gains of which are scheduled as a function of fundamental plant parameters. The tuning of closed-loop performance is supported by an analysis of the phase-margin and the sensitivity function. Experimental results confirm the effectiveness of the control algorithm in regulating the mean-value rail pressure independently from engine working conditions (engine speed and time of injection) with limited design effort.

Modern Water Resources Engineering

Author: Lawrence K. Wang,Chih Ted Yang

Publisher: Springer Science & Business Media

ISBN: 1627035958

Category: Science

Page: 866

View: 7431

The Handbook of Environmental Engineering series is an incredible collection of methodologies that study the effects of pollution and waste in their three basic forms: gas, solid, and liquid. This exciting new addition to the series, Volume 15: Modern Water Resources Engineering , has been designed to serve as a water resources engineering reference book as well as a supplemental textbook. We hope and expect it will prove of equal high value to advanced undergraduate and graduate students, to designers of water resources systems, and to scientists and researchers. A critical volume in the Handbook of Environmental Engineering series, chapters employ methods of practical design and calculation illustrated by numerical examples, include pertinent cost data whenever possible, and explore in great detail the fundamental principles of the field. Volume 15: Modern Water Resources Engineering, provides information on some of the most innovative and ground-breaking advances in the field today from a panel of esteemed experts.

Subject Guide to Books in Print

An Index to the Publishers' Trade List Annual

Author: N.A

Publisher: N.A

ISBN: N.A

Category: American literature

Page: N.A

View: 5891

Numerical Computation of Internal and External Flows

Author: Charles Hirsch

Publisher: N.A

ISBN: 9780750665957

Category:

Page: N.A

View: 849

The second edition of this book is a self-contained introduction to computational fluid dynamics (CFD). It covers the fundamentals of the subject and is ideal as a text or a comprehensive reference to CFD theory and practice. New approach takes readers seamlessly from first principles to more advanced and applied topics. Presents the essential components of a simulation system at a level suitable for those coming into contact with CFD for the first time, and is ideal for those who need a comprehensive refresher on the fundamentals of CFD. Enhanced pedagogy features chapter objectives, hands-on practice examples and end of chapter exercises. Extended coverage of finite difference, finite volume and finite element methods. New chapters include an introduction to grid properties and the use of grids in practice. Includes material on 2-D inviscid, potential and Euler flows, 2-D viscous flows and Navier-Stokes flows to enable the reader to develop basic CFD simulations. Includes best practice guidelines for applying existing commercial or shareware CFD tools."

Numerical Computation of Internal and External Flows, Volume 1

Fundamentals of Numerical Discretization

Author: Charles Hirsch

Publisher: Wiley

ISBN: 9780471923855

Category: Technology & Engineering

Page: 538

View: 5400

Numerical Computation of Internal and External Flows Volume 1: Fundamentals of Numerical Discretization C. Hirsch, Vrije Universiteit Brussel, Brussels, Belgium This is the first of two volumes which together describe comprehensively the theory and practice of the numerical computation of internal and external flows. In this volume, the author explains the use of basic computational methods to solve problems in fluid dynamics, comparing these methods so that the reader can see which would be the most appropriate to use for a particular problem. The book is divided into four parts. In the first part, mathematical models are introduced. In the second part, the various numerical methods are described, while in the third and fourth parts the workings of these methods are investigated in some detail. Volume 2 will be concerned with the applications of numerical methods to flow problems, and together the two volumes will provide an excellent reference for practitioners and researchers working in computational fluid mechanics and dynamics. Contents Preface Nomenclature Part 1 The Mathematical Models for Fluid Flow Simulations at Various Levels of Approximation Introduction Chapter 1 The Basic Equations of Fluid Dynamics Chapter 2 The Dynamic Levels of Approximation Chapter 3 The Mathematical Nature of the Flow Equations and their Boundary Conditions Part II Basic Discretization Techniques Chapter 4 The Finite Difference Method Chapter 5 The Finite Element Method Chapter 6 Finite Volume Method and Conservative Discretizations Part III The Analysis of Numerical Schemes Chapter 7 The Concepts of Consistency, Stability and Convergence Chapter 8 The Von Neumann Method for Stability Analysis Chapter 9 The Method of the Equivalent Differential Equation for the Analysis of Stability Chapter 10 The Matrix Method for Stability Analysis Part IV The Resolution of Discretized Equations Chapter 11 Integration Methods for Systems of Ordinary Differential Equations Chapter 12 Iterative Methods for the Resolution of Algebraic Systems Appendix Thomas Algorithm for Tridiagonal Systems Index

Computational Methods for Fluid Dynamics

Author: Joel H. Ferziger,Milovan Peric

Publisher: Springer Science & Business Media

ISBN: 3642976514

Category: Technology & Engineering

Page: 364

View: 5826

A detailed description of the methods most often used in practice. The authors are experts in their fields and cover such advanced techniques as direct and large-eddy simulation of turbulence, multigrid methods, parallel computing, moving grids, structured, block-structured and unstructured boundary-fitted grids, and free surface flows. The book shows common roots and basic principles for many apparently different methods, while also containing a great deal of practical advice for code developers and users. All the computer codes can be accessed from the Springer server on the internet. Designed to be equally useful for beginners and experts.

Lecture series

Author: N.A

Publisher: N.A

ISBN: N.A

Category: Fluid dynamics

Page: N.A

View: 3728

Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics

Author: Charles Hirsch

Publisher: Elsevier

ISBN: 9780080550022

Category: Mathematics

Page: 680

View: 4882

The second edition of this book is a self-contained introduction to computational fluid dynamics (CFD). It covers the fundamentals of the subject and is ideal as a text or a comprehensive reference to CFD theory and practice. New approach takes readers seamlessly from first principles to more advanced and applied topics. Presents the essential components of a simulation system at a level suitable for those coming into contact with CFD for the first time, and is ideal for those who need a comprehensive refresher on the fundamentals of CFD. Enhanced pedagogy features chapter objectives, hands-on practice examples and end of chapter exercises. Extended coverage of finite difference, finite volume and finite element methods. New chapters include an introduction to grid properties and the use of grids in practice. Includes material on 2-D inviscid, potential and Euler flows, 2-D viscous flows and Navier-Stokes flows to enable the reader to develop basic CFD simulations. Includes best practice guidelines for applying existing commercial or shareware CFD tools.

CMWR ...

Author: W. R. Blain,K. L. Katsifarakis

Publisher: Computational Mechanics

ISBN: 9781853122705

Category: Water-supply engineering

Page: 328

View: 2551