Numerical Methods for Stochastic Partial Differential Equations with White Noise

Author: Zhongqiang Zhang,George Em Karniadakis

Publisher: Springer

ISBN: 3319575112

Category: Mathematics

Page: 394

View: 8421

This book covers numerical methods for stochastic partial differential equations with white noise using the framework of Wong-Zakai approximation. The book begins with some motivational and background material in the introductory chapters and is divided into three parts. Part I covers numerical stochastic ordinary differential equations. Here the authors start with numerical methods for SDEs with delay using the Wong-Zakai approximation and finite difference in time. Part II covers temporal white noise. Here the authors consider SPDEs as PDEs driven by white noise, where discretization of white noise (Brownian motion) leads to PDEs with smooth noise, which can then be treated by numerical methods for PDEs. In this part, recursive algorithms based on Wiener chaos expansion and stochastic collocation methods are presented for linear stochastic advection-diffusion-reaction equations. In addition, stochastic Euler equations are exploited as an application of stochastic collocation methods, where a numerical comparison with other integration methods in random space is made. Part III covers spatial white noise. Here the authors discuss numerical methods for nonlinear elliptic equations as well as other equations with additive noise. Numerical methods for SPDEs with multiplicative noise are also discussed using the Wiener chaos expansion method. In addition, some SPDEs driven by non-Gaussian white noise are discussed and some model reduction methods (based on Wick-Malliavin calculus) are presented for generalized polynomial chaos expansion methods. Powerful techniques are provided for solving stochastic partial differential equations. This book can be considered as self-contained. Necessary background knowledge is presented in the appendices. Basic knowledge of probability theory and stochastic calculus is presented in Appendix A. In Appendix B some semi-analytical methods for SPDEs are presented. In Appendix C an introduction to Gauss quadrature is provided. In Appendix D, all the conclusions which are needed for proofs are presented, and in Appendix E a method to compute the convergence rate empirically is included. In addition, the authors provide a thorough review of the topics, both theoretical and computational exercises in the book with practical discussion of the effectiveness of the methods. Supporting Matlab files are made available to help illustrate some of the concepts further. Bibliographic notes are included at the end of each chapter. This book serves as a reference for graduate students and researchers in the mathematical sciences who would like to understand state-of-the-art numerical methods for stochastic partial differential equations with white noise.

Numerical Mathematics and Advanced Applications

Proceedings of ENUMATH 2007, the 7th European Conference on Numerical Mathematics and Advanced Applications, Graz, Austria, September 2007

Author: Karl Kunisch,Günther Of,Olaf Steinbach

Publisher: Springer Science & Business Media

ISBN: 3540697772

Category: Mathematics

Page: 826

View: 3104

The European Conference on Numerical Mathematics and Advanced Applications (ENUMATH) is a series of conferences held every two years to provide a forum for discussion on recent aspects of numerical mathematics and their applications. The ?rst ENUMATH conference was held in Paris (1995), and the series continued by the one in Heidelberg (1997), Jyvaskyla (1999), Ischia (2001), Prague (2003), and Santiago de Compostela (2005). This volume contains a selection of invited plenary lectures, papers presented in minisymposia, and contributed papers of ENUMATH 2007, held in Graz, Austria, September 10–14, 2007. We are happy that so many people have shown their interest in this conference. In addition to the ten invited presentations and the public lecture, we had more than 240 talks in nine minisymposia and ?fty four sessions of contributed talks, and about 316 participants from all over the world, specially from Europe. A total of 98 contributions appear in these proceedings. Topics include theoretical aspects of new numerical techniques and algorithms, as well as to applications in engineering and science. The book will be useful for a wide range of readers, giving them an excellent overview of the most modern methods, techniques, algorithms and results in numerical mathematics, scienti?c computing and their applications. We would like to thank all the participants for the attendance and for their va- ablecontributionsanddiscussionsduringtheconference.Specialthanksgothe m- isymposium organizers, who made a large contribution to the conference, the chair persons, and all speakers.

Numerical and Symbolic Scientific Computing

Progress and Prospects

Author: Ulrich Langer,Peter Paule

Publisher: Springer Science & Business Media

ISBN: 9783709107942

Category: Mathematics

Page: 358

View: 6516

The book presents the state of the art and results and also includes articles pointing to future developments. Most of the articles center around the theme of linear partial differential equations. Major aspects are fast solvers in elastoplasticity, symbolic analysis for boundary problems, symbolic treatment of operators, computer algebra, and finite element methods, a symbolic approach to finite difference schemes, cylindrical algebraic decomposition and local Fourier analysis, and white noise analysis for stochastic partial differential equations. Further numerical-symbolic topics range from applied and computational geometry to computer algebra methods used for total variation energy minimization.

Probability and Partial Differential Equations in Modern Applied Mathematics

Author: Edward C. Waymire

Publisher: Springer Science & Business Media

ISBN: 038729371X

Category: Mathematics

Page: 272

View: 1994

"Probability and Partial Differential Equations in Modern Applied Mathematics" is devoted to the role of probabilistic methods in modern applied mathematics from the perspectives of both a tool for analysis and as a tool in modeling. There is a recognition in the applied mathematics research community that stochastic methods are playing an increasingly prominent role in the formulation and analysis of diverse problems of contemporary interest in the sciences and engineering. A probabilistic representation of solutions to partial differential equations that arise as deterministic models allows one to exploit the power of stochastic calculus and probabilistic limit theory in the analysis of deterministic problems, as well as to offer new perspectives on the phenomena for modeling purposes. There is also a growing appreciation of the role for the inclusion of stochastic effects in the modeling of complex systems. This has led to interesting new mathematical problems at the interface of probability, dynamical systems, numerical analysis, and partial differential equations. This volume will be useful to researchers and graduate students interested in probabilistic methods, dynamical systems approaches and numerical analysis for mathematical modeling in the sciences and engineering.

Stochastic Numerics for Mathematical Physics

Author: Grigori Noah Milstein,Michael V. Tretyakov

Publisher: Springer Science & Business Media

ISBN: 3662100630

Category: Science

Page: 596

View: 5561

Stochastic differential equations have many applications in the natural sciences. Besides, the employment of probabilistic representations together with the Monte Carlo technique allows us to reduce solution of multi-dimensional problems for partial differential equations to integration of stochastic equations. This approach leads to powerful computational mathematics that is presented in the treatise. The authors propose many new special schemes, some published here for the first time. In the second part of the book they construct numerical methods for solving complicated problems for partial differential equations occurring in practical applications, both linear and nonlinear. All the methods are presented with proofs and hence founded on rigorous reasoning, thus giving the book textbook potential. An overwhelming majority of the methods are accompanied by the corresponding numerical algorithms which are ready for implementation in practice. The book addresses researchers and graduate students in numerical analysis, physics, chemistry, and engineering as well as mathematical biology and financial mathematics.

Stochastic Systems

Uncertainty Quantification and Propagation

Author: Mircea Grigoriu

Publisher: Springer Science & Business Media

ISBN: 1447123271

Category: Technology & Engineering

Page: 532

View: 5030

Uncertainty is an inherent feature of both properties of physical systems and the inputs to these systems that needs to be quantified for cost effective and reliable designs. The states of these systems satisfy equations with random entries, referred to as stochastic equations, so that they are random functions of time and/or space. The solution of stochastic equations poses notable technical difficulties that are frequently circumvented by heuristic assumptions at the expense of accuracy and rigor. The main objective of Stochastic Systems is to promoting the development of accurate and efficient methods for solving stochastic equations and to foster interactions between engineers, scientists, and mathematicians. To achieve these objectives Stochastic Systems presents: A clear and brief review of essential concepts on probability theory, random functions, stochastic calculus, Monte Carlo simulation, and functional analysis Probabilistic models for random variables and functions needed to formulate stochastic equations describing realistic problems in engineering and applied sciences Practical methods for quantifying the uncertain parameters in the definition of stochastic equations, solving approximately these equations, and assessing the accuracy of approximate solutions Stochastic Systems provides key information for researchers, graduate students, and engineers who are interested in the formulation and solution of stochastic problems encountered in a broad range of disciplines. Numerous examples are used to clarify and illustrate theoretical concepts and methods for solving stochastic equations. The extensive bibliography and index at the end of the book constitute an ideal resource for both theoreticians and practitioners.

Finite Elemente

Theorie, schnelle Löser und Anwendungen in der Elastizitätstheorie

Author: Dietrich Braess

Publisher: Springer-Verlag

ISBN: 3662072335

Category: Technology & Engineering

Page: 320

View: 4443

Diese völlig überarbeitete Neuauflage bietet dem Leser eine gründliche Einführung in die Methode der Finiten Elemente, welche heute verstärkt zur numerischen Lösung von partiellen Differentialgleichungen eingesetzt werden. Die Theorie wird so weit entwickelt, daß der Leser mit Kenntnissen aus den Grundvorlesungen des Mathematikstudiums auskommt. Dem für die Praxis relevanten Mehrgitterverfahren und der Methode der konjugierten Gradienten wird ein breiter Platz eingeräumt. Ausführlich wird die Strukturmechanik als ein wichtiger und typischer Anwendungsbereich für Finite Elemente behandelt. Da dieser Aspekt in anderen Lehrbüchern kaum Berücksichtigung findet, wurde er in der Neuauflage stark überarbeitet und abgerundet. Als weitere Ergänzung ist vor allem die Diskussion von a posteriori Schätzern zu nennen.

Partielle Differentialgleichungen und numerische Methoden

Author: Stig Larsson,Vidar Thomee

Publisher: Springer-Verlag

ISBN: 3540274227

Category: Mathematics

Page: 272

View: 8130

Das Buch ist für Studenten der angewandten Mathematik und der Ingenieurwissenschaften auf Vordiplomniveau geeignet. Der Schwerpunkt liegt auf der Verbindung der Theorie linearer partieller Differentialgleichungen mit der Theorie finiter Differenzenverfahren und der Theorie der Methoden finiter Elemente. Für jede Klasse partieller Differentialgleichungen, d.h. elliptische, parabolische und hyperbolische, enthält der Text jeweils ein Kapitel zur mathematischen Theorie der Differentialgleichung gefolgt von einem Kapitel zu finiten Differenzenverfahren sowie einem zu Methoden der finiten Elemente. Den Kapiteln zu elliptischen Gleichungen geht ein Kapitel zum Zweipunkt-Randwertproblem für gewöhnliche Differentialgleichungen voran. Ebenso ist den Kapiteln zu zeitabhängigen Problemen ein Kapitel zum Anfangswertproblem für gewöhnliche Differentialgleichungen vorangestellt. Zudem gibt es ein Kapitel zum elliptischen Eigenwertproblem und zur Entwicklung nach Eigenfunktionen. Die Darstellung setzt keine tiefer gehenden Kenntnisse in Analysis und Funktionalanalysis voraus. Das erforderliche Grundwissen über lineare Funktionalanalysis und Sobolev-Räume wird im Anhang im Überblick besprochen.

Stochastic Calculus

Applications in Science and Engineering

Author: Mircea Grigoriu

Publisher: Springer Science & Business Media

ISBN: 9780817642426

Category: Mathematics

Page: 774

View: 3145

"This self-contained text may be used for several graduate courses and as an important reference resource for applied scientists interested in analytical and numerical methods for solving stochastic problems."--BOOK JACKET.

Probabilistic Analysis and Related Topics

Author: A. T. Bharucha-Reid

Publisher: Elsevier

ISBN: 1483275469

Category: Mathematics

Page: 270

View: 435

Probabilistic Analysis and Related Topics, Volume 3 focuses on the continuity, integrability, and differentiability of random functions, including operator theory, measure theory, and functional and numerical analysis. The selection first offers information on the qualitative theory of stochastic systems and Langevin equations with multiplicative noise. Discussions focus on phase-space evolution via direct integration, phase-space evolution, linear and nonlinear systems, linearization, and generalizations. The text then ponders on the stability theory of stochastic difference systems and Markov properties for random fields. Topics include Markov property of solutions of stochastic partial differential equations; Markov property for generalized Gaussian random fields; Markov properties for generalized random fields; stochastic stability of nonlinear systems; and linear stochastic systems. The publication examines the method of random contractors and its applications to random nonlinear equations, including integral contractors and applications to random equations; random contractors with random nonlinear majorant functions; and random contractors and application to random nonlinear operator equations. The selection is a valuable reference for mathematicians and researchers interested in the general theory of random functions.

Stochastic Analysis 2010

Author: Dan Crisan

Publisher: Springer Science & Business Media

ISBN: 9783642153587

Category: Mathematics

Page: 299

View: 7239

Stochastic Analysis aims to provide mathematical tools to describe and model high dimensional random systems. Such tools arise in the study of Stochastic Differential Equations and Stochastic Partial Differential Equations, Infinite Dimensional Stochastic Geometry, Random Media and Interacting Particle Systems, Super-processes, Stochastic Filtering, Mathematical Finance, etc. Stochastic Analysis has emerged as a core area of late 20th century Mathematics and is currently undergoing a rapid scientific development. The special volume “Stochastic Analysis 2010” provides a sample of the current research in the different branches of the subject. It includes the collected works of the participants at the Stochastic Analysis section of the 7th ISAAC Congress organized at Imperial College London in July 2009.

International Conference on Mathematical Sciences and Statistics 2013

Selected Papers

Author: Adem Kilicman,Wah June Leong,Zainidin Eshkuvatov

Publisher: Springer Science & Business Media

ISBN: 9814585335

Category: Mathematics

Page: 295

View: 3653

This volume is devoted to the most recent discoveries in mathematics and statistics. It also serves as a platform for knowledge and information exchange between experts from industrial and academic sectors. The book covers a wide range of topics, including mathematical analyses, probability, statistics, algebra, geometry, mathematical physics, wave propagation, stochastic processes, ordinary and partial differential equations, boundary value problems, linear operators, cybernetics and number and functional theory. It is a valuable resource for pure and applied mathematicians, statisticians, engineers and scientists.

Numerische Simulation in der Moleküldynamik

Numerik, Algorithmen, Parallelisierung, Anwendungen

Author: Michael Griebel,Stephan Knapek,Gerhard Zumbusch,Attila Caglar

Publisher: Springer-Verlag

ISBN: 364218779X

Category: Mathematics

Page: 480

View: 1726

Das Buch behandelt Methoden des wissenschaftlichen Rechnens in der Moleküldynamik, einem Bereich, der in vielen Anwendungen der Chemie, der Biowissenschaften, der Materialwissenschaften, insbesondere der Nanotechnologie, sowie der Astrophysik eine wichtige Rolle spielt. Es führt in die wichtigsten Simulationstechniken zur numerischen Behandlung der Newtonschen Bewegungsgleichungen ein. Der Schwerpunkt liegt hierbei auf der schnellen Auswertung kurz- und langreichweitiger Kräfte mittels Linked Cell-, P$/\3$M-, Baum- und Multipol-Verfahren, sowie deren paralleler Implementierung und Lastbalancierung auf Rechensystemen mit verteiltem Speicher. Die einzelnen Kapitel beinhalten darüberhinaus detailierte Hinweise, um die Verfahren Schritt für Schritt in ein Programmpaket umzusetzen. In zahlreichen farbigen Abbildungen werden Simulationsergebnisse für eine Reihe von Anwendungen präsentiert.

Spectral and High Order Methods for Partial Differential Equations

Selected papers from the ICOSAHOM '09 conference, June 22-26, Trondheim, Norway

Author: Jan S. Hesthaven,Einar M. Rønquist

Publisher: Springer Science & Business Media

ISBN: 9783642153372

Category: Mathematics

Page: 510

View: 3737

The book contains a selection of high quality papers, chosen among the best presentations during the International Conference on Spectral and High-Order Methods (2009), and provides an overview of the depth and breadth of the activities within this important research area. The carefully reviewed selection of the papers will provide the reader with a snapshot of state-of-the-art and help initiate new research directions through the extensive bibliography.

Mathematics for Neuroscientists

Author: Fabrizio Gabbiani,Steven James Cox

Publisher: Academic Press

ISBN: 9780080890494

Category: Psychology

Page: 498

View: 775

Virtually all scientific problems in neuroscience require mathematical analysis, and all neuroscientists are increasingly required to have a significant understanding of mathematical methods. There is currently no comprehensive, integrated introductory book on the use of mathematics in neuroscience; existing books either concentrate solely on theoretical modeling or discuss mathematical concepts for the treatment of very specific problems. This book fills this need by systematically introducing mathematical and computational tools in precisely the contexts that first established their importance for neuroscience. All mathematical concepts will be introduced from the simple to complex using the most widely used computing environment, Matlab. This book will provide a grounded introduction to the fundamental concepts of mathematics, neuroscience and their combined use, thus providing the reader with a springboard to cutting-edge research topics and fostering a tighter integration of mathematics and neuroscience for future generations of students. A very didactic and systematic introduction to mathematical concepts of importance for the analysis of data and the formulation of concepts based on experimental data in neuroscience Provides introductions to linear algebra, ordinary and partial differential equations, Fourier transforms, probabilities and stochastic processes Introduces numerical methods used to implement algorithms related to each mathematical concept Illustrates numerical methods by applying them to specific topics in neuroscience, including Hodgkin-Huxley equations, probabilities to describe stochastic release, stochastic processes to describe noise in neurons, Fourier transforms to describe the receptive fields of visual neurons Allows the mathematical novice to analyze their results in more sophisticated ways, and consider them in a broader theoretical framework

Stochastic Biomathematical Models

with Applications to Neuronal Modeling

Author: Mostafa Bachar,Jerry J. Batzel,Susanne Ditlevsen

Publisher: Springer

ISBN: 3642321577

Category: Mathematics

Page: 206

View: 383

Stochastic biomathematical models are becoming increasingly important as new light is shed on the role of noise in living systems. In certain biological systems, stochastic effects may even enhance a signal, thus providing a biological motivation for the noise observed in living systems. Recent advances in stochastic analysis and increasing computing power facilitate the analysis of more biophysically realistic models, and this book provides researchers in computational neuroscience and stochastic systems with an overview of recent developments. Key concepts are developed in chapters written by experts in their respective fields. Topics include: one-dimensional homogeneous diffusions and their boundary behavior, large deviation theory and its application in stochastic neurobiological models, a review of mathematical methods for stochastic neuronal integrate-and-fire models, stochastic partial differential equation models in neurobiology, and stochastic modeling of spreading cortical depression.

Numerik 3x9

Drei Themengebiete in jeweils neun kurzen Kapiteln

Author: Sören Bartels

Publisher: Springer-Verlag

ISBN: 3662482037

Category: Mathematics

Page: 380

View: 3703

Dieses Buch bietet eine Einführung in Methoden zur praktischen Lösung mathematischer Probleme, wie der Bestimmung von Eigenwerten, der Approximation und Integration von Funktionen und der näherungsweisen Lösung gewöhnlicher Differenzialgleichungen. Vorausgesetzt werden nur Grundkenntnisse aus der linearen Algebra und Analysis sowie elementare Programmiererfahrungen. Lernziele, Tests zur Selbstüberprüfung und Anwendungsaufgaben am Ende jedes Kapitels vertiefen das Verständnis. Im Anhang des Buchs finden sich unter anderem eine umfangreiche Aufgabensammlung, detaillierte Beschreibungen für Programmierprojekte, Einführungen in die Programmiersprachen Matlab und C und einige Beispielprogramme.