Power Electronics: A First Course

A First Course

Author: Ned Mohan

Publisher: Wiley Global Education

ISBN: 111821434X

Category: Technology & Engineering

Page: 288

View: 3867

This book is part of a three-book series for the sequence of electric power electives taught in most large universities' Electrical Engineering departments. Advances in hybrid-electric cars and alternative energy systems, coupled with the severe environmental problems associated with hydrocarbon-based fuels, are driving renewed interest in the electric energy systems (EES) curriculum at the Undergraduate level. Ned Mohan has been a leader in EES education and research for decades, as author of the best-selling text/reference Power Electronics with Wiley and a series of textbooks self-published under the MNPERE imprint. Mohan leads a consortium of 80+ universities working to revitalize electric power engineering education. These texts are based on the integrated curriculum developed over nearly 15 years of research in education in this field. This textbook focuses on Power Electronics as one of the topics in an integrated Electric Energy Systems curriculum. It follows a top-down, systems-level approach to highlight interrelationships between the sub-fields within this curriculum, and is intended to cover both the fundamentals and practical design in a single-semester course. The author follows a building-block approach to power electronics that provides an in-depth discussion of several important topics that often omitted from conventional courses, for example, designing feedback control, power-factor-correction circuits, soft-switching, and Space-Vector PWM.

Electronics: A First Course

Author: Owen Bishop

Publisher: Routledge

ISBN: 1136440356

Category: Technology & Engineering

Page: 241

View: 412

Owen Bishop’s First Course starts with the basics of electricity and component types, introducing students to practical work almost straight away. No prior knowledge of electronics is required. The approach is student-centred with self-test features to check understanding, including numerous activities suitable for practicals, homework and other assignments. Multiple choice questions are incorporated throughout the text in order to aid student learning. Key facts, formulae and definitions are highlighted to aid revision, and theory is backed up by numerous examples within the book. Each chapter ends with a set of problems that includes exam-style questions, for which numerical answers are provided at the end of the book. This text is ideal for a wide range of introductory courses in electronics, technology, physics and engineering. The coverage has been carefully matched to the latest UK syllabuses including GCSE Electronics, GCSE Design & Technology, Engineering GCSE and Edexcel’s BTEC First in Engineering, resulting in a text that meets the needs of students on all Level 2 electronics units and courses. Owen Bishop’s talent for introducing the world of electronics has long been a proven fact with his textbooks, professional introductions and popular circuit construction guides being chosen by thousands of students, lecturers and electronics enthusiasts.

Electric Power Systems

A First Course

Author: Ned Mohan

Publisher: John Wiley & Sons

ISBN: 1118074793

Category: Technology & Engineering

Page: 243

View: 7097

Author Ned Mohan has been a leader in EES education and research for decades. His three-book series on Power Electronics focuses on three essential topics in the power sequence based on applications relevant to this age of sustainable energy such as wind turbines and hybrid electric vehicles. The three topics include power electronics, power systems and electric machines. Key features in the first Edition build on Mohan's successful MNPERE texts; his systems approach which puts dry technical detail in the context of applications; and substantial pedagogical support including PPT's, video clips, animations, clicker questions and a lab manual. It follows a top-down systems-level approach to power electronics to highlight interrelationships between these sub-fields. It's intended to cover fundamental and practical design. This book also follows a building-block approach to power electronics that allows an in-depth discussion of several important topics that are usually left. Topics are carefully sequenced to maintain continuity and interest.

Electric Machines and Drives

Author: Ned Mohan

Publisher: Wiley

ISBN: 9781118074817

Category: Technology & Engineering

Page: 288

View: 938

Mohan's Electric Machines and Drives is part of a three-book series designed for the power sequence electives on Electrical Engineering. The book focuses on power topics including advances in hybrid-electric cars and alternative energy systems, coupled with severe environmental problems associated with hydrocarbon-based fuels. The text builds off Mohan's successful MNPERE titles and adopts a systems approach.

Fundamentals of Power Electronics

Author: Erickson

Publisher: Springer Science & Business Media

ISBN: 1461576466

Category: Technology & Engineering

Page: 773

View: 1331

In many university curricula, the power electronics field has evolved beyond the status of comprising one or two special-topics courses. Often there are several courses dealing with the power electronics field, covering the topics of converters, motor drives, and power devices, with possibly additional advanced courses in these areas as well. There may also be more traditional power-area courses in energy conversion, machines, and power systems. In the breadth vs. depth tradeoff, it no longer makes sense for one textbook to attempt to cover all of these courses; indeed, each course should ideally employ a dedicated textbook. This text is intended for use in introductory power electronics courses on converters, taught at the senior or first-year graduate level. There is sufficient material for a one year course or, at a faster pace with some material omitted, for two quarters or one semester. The first class on converters has been called a way of enticing control and electronics students into the power area via the "back door". The power electronics field is quite broad, and includes fundamentals in the areas of • Converter circuits and electronics • Control systems • Magnetics • Power applications • Design-oriented analysis This wide variety of areas is one of the things which makes the field so interesting and appealing to newcomers. This breadth also makes teaching the field a challenging undertaking, because one cannot assume that all students enrolled in the class have solid prerequisite knowledge in so many areas.



Publisher: PHI Learning Pvt. Ltd.

ISBN: 9788120327764

Category: Technology & Engineering

Page: 828

View: 5281

This book provides a comprehensive introduction to the fundamental principles of modern electronic devices and circuits. It is suitable for adoption as the textbook for the first course in electronics found in most curricula for undergraduate physics and electronic science students. It also covers several topics of electronics being taught at the postgraduate first-year level in physics. Besides, the students pursuing degree or diploma courses in electrical, electronics and computer engineering will find this textbook useful and self-contained. The text provides a thorough and rigorous explanation of characteristics and parameters of the most important semiconductor devices in general use today. It explains the underlying principles of how different circuits work—providing valuable insights into analysis of circuits so essential for solving design problems. Coverage includes all the basic aspects of analog and digital electronics plus several important topics such as current mirrors and their applications, amplifiers with active load, composite devices and their equivalent models and applications, op-amp mathematical and circuit modelling, and logic circuits analysis. Key Features : • Emphasizes underlying physics and operational characteristics of semiconductor devices • Numerous solved examples and review questions help the students develop an intuitive grasp of the theory. • Sufficient number of conventional and short-answer type model questions included in each chapter acquaint the students with the type of questions generally asked in examinations.

Analog and Digital Electronics

A First Course

Author: Peter H. Beards

Publisher: N.A

ISBN: 9780135717530

Category: Technology & Engineering

Page: 646

View: 8254

This revised edition of the bestselling text contains updated coverage of Gallium Arsenide, instrumentation amplifiers and active filters and the 55 tuner.

A First Course in Predictive Control

Author: J.A. Rossiter

Publisher: CRC Press

ISBN: 1351597159

Category: Technology & Engineering

Page: 402

View: 3421

The book presents a significant expansion in depth and breadth of the previous edition. It includes substantially more numerical illustrations and copious supporting MATLAB code that the reader can use to replicate illustrations or build his or her own. The code is deliberately written to be as simple as possible and easy to edit. The book is an excellent starting point for any researcher to gain a solid grounding in MPC concepts and algorithms before moving into application or more advanced research topics. Sample problems for readers are embedded throughout the chapters, and in-text questions are designed for readers to demonstrate an understanding of concepts through numerical simulation.

Electric Energy Systems

Author: S. A. Nasar

Publisher: N.A


Category: Technology & Engineering

Page: 416

View: 9061

This book is intended to present an overview of electric energy components and systems.

A First Course in Numerical Analysis

Author: Anthony Ralston,Philip Rabinowitz

Publisher: Courier Corporation

ISBN: 9780486414546

Category: Mathematics

Page: 606

View: 4862

Outstanding text, oriented toward computer solutions, stresses errors in methods and computational efficiency. Problems — some strictly mathematical, others requiring a computer — appear at the end of each chapter.

Fundamentals of Power Electronics

Author: S. Rama Reddy

Publisher: Alpha Science Int'l Ltd.

ISBN: 9781842650561

Category: Computers

Page: 190

View: 9198

Designed for polytechnic and undergraduate students of electrical/electronics, this book offers short questions and answers at the end of chapters. It is also suitable for those preparing for professional courses like AMIE and AMITE.

Advanced Electric Drives

Analysis, Control, and Modeling Using MATLAB / Simulink

Author: Ned Mohan

Publisher: John Wiley & Sons

ISBN: 111891113X

Category: Technology & Engineering

Page: 208

View: 1962

With nearly two-thirds of global electricity consumed by electric motors, it should come as no surprise that their proper control represents appreciable energy savings. The efficient use of electric drives also has far-reaching applications in such areas as factory automation (robotics), clean transportation (hybrid-electric vehicles), and renewable (wind and solar) energy resource management. Advanced Electric Drives utilizes a physics-based approach to explain the fundamental concepts of modern electric drive control and its operation under dynamic conditions. Author Ned Mohan, a decades-long leader in Electrical Energy Systems (EES) education and research, reveals how the investment of proper controls, advanced MATLAB and Simulink simulations, and careful forethought in the design of energy systems translates to significant savings in energy and dollars. Offering students a fresh alternative to standard mathematical treatments of dq-axis transformation of a-b-c phase quantities, Mohan’s unique physics-based approach “visualizes” a set of representative dq windings along an orthogonal set of axes and then relates their currents and voltages to the a-b-c phase quantities. Advanced Electric Drives is an invaluable resource to facilitate an understanding of the analysis, control, and modelling of electric machines. • Gives readers a “physical” picture of electric machines and drives without resorting to mathematical transformations for easy visualization • Confirms the physics-based analysis of electric drives mathematically • Provides readers with an analysis of electric machines in a way that can be easily interfaced to common power electronic converters and controlled using any control scheme • Makes the MATLAB/Simulink files used in examples available to anyone in an accompanying website • Reinforces fundamentals with a variety of discussion questions, concept quizzes, and homework problems

Electronics for Kids

Play with Simple Circuits and Experiment with Electricity!

Author: Oyvind Nydal Dahl

Publisher: No Starch Press

ISBN: 1593277474

Category: Technology & Engineering

Page: 328

View: 6726

Why do the lights in a house turn on when you flip a switch? How does a remote-controlled car move? And what makes lights on TVs and microwaves blink? The technology around you may seem like magic, but most of it wouldn’t run without electricity. Electronics for Kids demystifies electricity with a collection of awesome hands-on projects. In Part 1, you’ll learn how current, voltage, and circuits work by making a battery out of a lemon, turning a metal bolt into an electromagnet, and transforming a paper cup and some magnets into a spinning motor. In Part 2, you’ll make even more cool stuff as you: –Solder a blinking LED circuit with resistors, capacitors, and relays –Turn a circuit into a touch sensor using your finger as a resistor –Build an alarm clock triggered by the sunrise –Create a musical instrument that makes sci-fi soundsThen, in Part 3, you’ll learn about digital electronics—things like logic gates and memory circuits—as you make a secret code checker and an electronic coin flipper. Finally, you’ll use everything you’ve learned to make the LED Reaction Game—test your reaction time as you try to catch a blinking light!With its clear explanations and assortment of hands-on projects, Electronics for Kids will have you building your own circuits in no time.

Power Electronics Basics

Operating Principles, Design, Formulas, and Applications

Author: Yuriy Rozanov,Sergey E. Ryvkin,Evgeny Chaplygin,Pavel Voronin

Publisher: CRC Press

ISBN: 1482298805

Category: Technology & Engineering

Page: 489

View: 7621

Power Electronics Basics: Operating Principles, Design, Formulas, and Applications provides fundamental knowledge for the analysis and design of modern power electronic devices. This concise and user-friendly resource: Explains the basic concepts and most important terms of power electronics Describes the power assemblies, control, and passive components of semiconductor power switches Covers the control of power electronic devices, from mathematical modeling to the analysis of the electrical processes Addresses pulse-width modulation, power quality control, and multilevel, modular, and multicell power converter topologies Discusses line-commutated and resonant converters, as well as inverters and AC converters based on completely controllable switches Explores cutting-edge applications of power electronics, including renewable energy production and storage, fuel cells, and electric drives Power Electronics Basics: Operating Principles, Design, Formulas, and Applications supplies graduate students, industry professionals, researchers, and academics with a solid understanding of the underlying theory, while offering an overview of the latest achievements and development prospects in the power electronics industry.

Introduction to Modern Power Electronics

Author: Andrzej M. Trzynadlowski

Publisher: John Wiley & Sons

ISBN: 1119003229

Category: Technology & Engineering

Page: 472

View: 6854

Provides comprehensive coverage of the basic principles and methods of electric power conversion and the latest developments in the field This book constitutes a comprehensive overview of the modern power electronics. Various semiconductor power switches are described, complementary components and systems are presented, and power electronic converters that process power for a variety of applications are explained in detail. This third edition updates all chapters, including new concepts in modern power electronics. New to this edition is extended coverage of matrix converters, multilevel inverters, and applications of the Z-source in cascaded power converters. The book is accompanied by a website hosting an instructor’s manual, a PowerPoint presentation, and a set of PSpice files for simulation of a variety of power electronic converters. Introduction to Modern Power Electronics, Third Edition: Discusses power conversion types: ac-to-dc, ac-to-ac, dc-to-dc, and dc-to-ac Reviews advanced control methods used in today’s power electronic converters Includes an extensive body of examples, exercises, computer assignments, and simulations Introduction to Modern Power Electronics, Third Edition is written for undergraduate and graduate engineering students interested in modern power electronics and renewable energy systems. The book can also serve as a reference tool for practicing electrical and industrial engineers.

Power Electronics and Energy Conversion Systems, Fundamentals and Hard-switching Converters

Author: Adrian Ioinovici

Publisher: John Wiley & Sons

ISBN: 1118443357

Category: Technology & Engineering

Page: 464

View: 7179

Power Electronics and Energy Conversion Systems is a definitive five-volume reference spanning classical theory through practical applications and consolidating the latest advancements in energy conversion technology. Comprehensive yet highly accessible, each volume is organised in a basic-to-sophisticated crescendo, providing a single-source reference for undergraduate and graduate students, researchers and designers. Volume 1 Fundamentals and Hard-switching Converters introduces the key challenges in power electronics from basic components to operation principles and presents classical hard- and soft-switching DC to DC converters, rectifiers and inverters. At a more advanced level, it provides comprehensive analysis of DC and AC models comparing the available approaches for their derivation and results. A full treatment of DC to DC hard-switching converters is given, from fundamentals to modern industrial solutions and practical engineering insight. The author elucidates various contradictions and misunderstandings in the literature, for example, in the treatment of the discontinuous conduction operation or in deriving AC small-signal models of converters. Other key features: • Consolidates the latest advancements in hard-switching converters including discontinuous capacitor voltage mode, and their use in power-factor-correction applications • Includes fully worked design examples, exercises, and case studies, with discussion of the practical consequences of each choice made during the design • Explains all topics in detail with step-by-step derivation of formulas appropriate for energy conversion courses • End-of-section review of the learned material • Includes topics treated in recent journal, conference and industry application coverage on solutions, theory and practical concerns With emphasis on clear explanation, the text offers both a thorough understanding of DC to DC converters for undergraduate and graduate students in power electronics, and more detailed material suitable for researchers, designers and practising engineers working on the development and design of power electronics. This is an accessible reference for engineering and procurement managers from industries such as consumer electronics, integrated circuits, aerospace and renewable energy.

Electric Powertrain

Energy Systems, Power Electronics and Drives for Hybrid, Electric and Fuel Cell Vehicles

Author: John G. Hayes,G. Abas Goodarzi

Publisher: John Wiley & Sons

ISBN: 1119063671

Category: Technology & Engineering

Page: 560

View: 515

The why, what and how of the electric vehicle powertrain Empowers engineering professionals and students with the knowledge and skills required to engineer electric vehicle powertrain architectures, energy storage systems, power electronics converters and electric drives. The modern electric powertrain is relatively new for the automotive industry, and engineers are challenged with designing affordable, efficient and high-performance electric powertrains as the industry undergoes a technological evolution. Co-authored by two electric vehicle (EV) engineers with decades of experience designing and putting into production all of the powertrain technologies presented, this book provides readers with the hands-on knowledge, skills and expertise they need to rise to that challenge. This four-part practical guide provides a comprehensive review of battery, hybrid and fuel cell EV systems and the associated energy sources, power electronics, machines, and drives. The first part of the book begins with a historical overview of electromobility and the related environmental impacts motivating the development of the electric powertrain. Vehicular requirements for electromechanical propulsion are then presented. Battery electric vehicles (BEV), fuel cell electric vehicles (FCEV), and conventional and hybrid electric vehicles (HEV) are then described, contrasted and compared for vehicle propulsion. The second part of the book features in-depth analysis of the electric powertrain traction machines, with a particular focus on the induction machine and the surface- and interior-permanent magnet ac machines. The brushed dc machine is also considered due to its ease of operation and understanding, and its historical place, especially as the traction machine on NASA’s Mars rovers. The third part of the book features the theory and applications for the propulsion, charging, accessory, and auxiliary power electronics converters. Chapters are presented on isolated and non-isolated dc-dc converters, traction inverters, and battery charging. The fourth part presents the introductory and applied electromagnetism required as a foundation throughout the book. • Introduces and holistically integrates the key EV powertrain technologies. • Provides a comprehensive overview of existing and emerging automotive solutions. • Provides experience-based expertise for vehicular and powertrain system and sub-system level study, design, and optimization. • Presents many examples of powertrain technologies from leading manufacturers. • Discusses the dc traction machines of the Mars rovers, the ultimate EVs from NASA. • Investigates the environmental motivating factors and impacts of electromobility. • Presents a structured university teaching stream from introductory undergraduate to postgraduate. • Includes real-world problems and assignments of use to design engineers, researchers, and students alike. • Features a companion website with numerous references, problems, solutions, and practical assignments. • Includes introductory material throughout the book for the general scientific reader. • Contains essential reading for government regulators and policy makers. Electric Powertrain: Energy Systems, Power Electronics and Drives for Hybrid, Electric and Fuel Cell Vehicles is an important professional resource for practitioners and researchers in the battery, hybrid, and fuel cell EV transportation industry. The book is a structured holistic textbook for the teaching of the fundamental theories and applications of energy sources, power electronics, and electric machines and drives to engineering undergraduate and postgraduate students. Textbook Structure and Suggested Teaching Curriculum This is primarily an engineering textbook covering the automotive powertrain, energy storage and energy conversion, power electronics, and electrical machines. A significant additional focus is placed on the engineering design, the energy for transportation, and the related environmental impacts. This textbook is an educational tool for practicing engineers and others, such as transportation policy planners and regulators. The modern automobile is used as the vehicle upon which to base the theory and applications, which makes the book a useful educational reference for our industry colleagues, from chemists to engineers. This material is also written to be of interest to the general reader, who may have little or no interest in the power electronics and machines. Introductory science, mathematics, and an inquiring mind suffice for some chapters. The general reader can read the introduction to each of the chapters and move to the next as soon as the material gets too advanced for him or her. Part I Vehicles and Energy Sources Chapter 1 Electromobility and the Environment Chapter 2 Vehicle Dynamics Chapter 3 Batteries Chapter 4 Fuel Cells Chapter 5 Conventional and Hybrid Powertrains Part II Electrical Machines Chapter 6 Introduction to Traction Machines Chapter 7 The Brushed DC Machine Chapter 8 Induction Machines Chapter 9 Surface-permanent-magnet AC Machines Chapter 10: Interior-permanent-magnet AC Machines Part III Power Electronics Chapter 11 DC-DC Converters Chapter 12 Isolated DC-DC Converters Chapter 13 Traction Drives and Three-phase Inverters Chapter 14 Battery Charging Chapter 15 Control of the Electric Drive Part IV Basics Chapter 16 Introduction to Electromagnetism, Ferromagnetism, and Electromechanical Energy Conversion The first third of the book (Chapters 1 to 6), plus parts of Chapters 14 and 16, can be taught to the general science or engineering student in the second or third year. It covers the introductory automotive material using basic concepts from mechanical, electrical, environmental, and electrochemical engineering. Chapter 14 on electrical charging and Chapter 16 on electromagnetism can also be used as a general introduction to electrical engineering. The basics of electromagnetism, ferromagnetism and electromechanical energy conversion (Chapter 16) and dc machines (Chapter 7) can be taught to second year (sophomore) engineering students who have completed introductory electrical circuits and physics. The third year (junior) students typically have covered ac circuit analysis, and so they can cover ac machines, such as the induction machine (Chapter 8) and the surface permanent-magnet ac machine (Chapter 9). As the students typically have studied control theory, they can investigate the control of the speed and torque loops of the motor drive (Chapter 15). Power electronics, featuring non-isolated buck and boost converters (Chapter 11), can also be introduced in the third year. The final-year (senior) students can then go on to cover the more advanced technologies of the interior-permanent-magnet ac machine (Chapter 10). Isolated power converters (Chapter 12), such as the full-bridge and resonant converters, inverters (Chapter 13), and power-factor-corrected battery chargers (Chapter 14), are covered in the power electronics section. This material can also be covered at the introductory postgraduate level. Various homework, simulation, and research exercises are presented throughout the textbook. The reader is encouraged to attempt these exercises as part of the learning experience.

Introduction to Electrical Power and Power Electronics

Author: Mukund R. Patel

Publisher: CRC Press

ISBN: 1466556609

Category: Science

Page: 528

View: 1272

Most traditional power systems textbooks focus on high-voltage transmission. However, the majority of power engineers work in urban factories, buildings, or industries where power comes from utility companies or is self-generated. Introduction to Electrical Power and Power Electronics is the first book of its kind to cover the entire scope of electrical power and power electronics systems in one volume—with a focus on topics that are directly relevant in power engineers’ daily work. Learn How Electrical Power Is Generated, Distributed, and Utilized Composed of 17 chapters, the book is organized into two parts. The first part introduces aspects of electrical power that most power engineers are involved in during their careers, including the distribution of power to load equipment such as motors via step-down transformers, cables, circuit breakers, relays, and fuses. For engineers working with standalone power plants, it also tackles generators. The book discusses how to design and operate systems for economic use of power and covers the use of batteries in greater depth than typically found in traditional power system texts. Understand How Power Electronics Work in Modern Systems The second part delves into power electronics switches, as well as the DC–DC converters, AC–DC–AC converters, and frequency converters used in variable-frequency motor drives. It also discusses quality-of-power issues in modern power systems with many large power electronics loads. A chapter on power converter cooling presents important interdisciplinary design topics. Draw on the Author’s Extensive Industry and Teaching Experience This timely book draws on the author’s 30 years of work experience at General Electric, Lockheed Martin, and Westinghouse Electric and 15 years of teaching electrical power at the U.S. Merchant Marine Academy. Designed for a one-semester or two-quarter course in electrical power and power electronics, it is also ideal for a refresher course or as a one-stop reference for industry professionals.

Foundations of Analog and Digital Electronic Circuits

Author: Anant Agarwal,Jeffrey Lang

Publisher: Elsevier

ISBN: 008050681X

Category: Technology & Engineering

Page: 1008

View: 7830

Unlike books currently on the market, this book attempts to satisfy two goals: combine circuits and electronics into a single, unified treatment, and establish a strong connection with the contemporary world of digital systems. It will introduce a new way of looking not only at the treatment of circuits, but also at the treatment of introductory coursework in engineering in general. Using the concept of ''abstraction,'' the book attempts to form a bridge between the world of physics and the world of large computer systems. In particular, it attempts to unify electrical engineering and computer science as the art of creating and exploiting successive abstractions to manage the complexity of building useful electrical systems. Computer systems are simply one type of electrical systems. +Balances circuits theory with practical digital electronics applications. +Illustrates concepts with real devices. +Supports the popular circuits and electronics course on the MIT OpenCourse Ware from which professionals worldwide study this new approach. +Written by two educators well known for their innovative teaching and research and their collaboration with industry. +Focuses on contemporary MOS technology.