Problems and Theorems in Analysis II

Theory of Functions. Zeros. Polynomials. Determinants. Number Theory. Geometry

Author: George Polya,Gabor Szegö

Publisher: Springer Science & Business Media

ISBN: 9783540636861

Category: Mathematics

Page: 392

View: 9557

Few mathematical books are worth translating 50 years after original publication. Polyá-Szegö is one! It was published in German in 1924, and its English edition was widely acclaimed when it appeared in 1972. In the past, more of the leading mathematicians proposed and solved problems than today. Their collection of the best in analysis is a heritage of lasting value.

Complex Analysis

Author: Eberhard Freitag,Rolf Busam

Publisher: Springer Science & Business Media

ISBN: 3540308237

Category: Mathematics

Page: 552

View: 4910

All needed notions are developed within the book: with the exception of fundamentals which are presented in introductory lectures, no other knowledge is assumed Provides a more in-depth introduction to the subject than other existing books in this area Over 400 exercises including hints for solutions are included

The Theory of Matrices

Author: Feliks Ruvimovich Gantmakher

Publisher: American Mathematical Soc.

ISBN: 9780821813768

Category: Mathematics

Page: 276

View: 8648

This treatise, by one of Russia's leading mathematicians, gives in easily accessible form a coherent account of matrix theory with a view to applications in mathematics, theoretical physics, statistics, electrical engineering, etc. The individual chapters have been kept as far as possible independent of each other, so that the reader acquainted with the contents of Chapter 1 can proceed immediately to the chapters of special interest. Much of the material has been available until now only in the periodical literature.

The Geometry of Schemes

Author: David Eisenbud,Joe Harris

Publisher: Springer Science & Business Media

ISBN: 0387226397

Category: Mathematics

Page: 300

View: 3604

Grothendieck’s beautiful theory of schemes permeates modern algebraic geometry and underlies its applications to number theory, physics, and applied mathematics. This simple account of that theory emphasizes and explains the universal geometric concepts behind the definitions. In the book, concepts are illustrated with fundamental examples, and explicit calculations show how the constructions of scheme theory are carried out in practice.

Mathematical Reviews

Author: N.A

Publisher: N.A

ISBN: N.A

Category: Mathematics

Page: N.A

View: 9139

Discriminants, Resultants, and Multidimensional Determinants

Author: Israel M. Gelfand,Mikhail Kapranov,Andrei Zelevinsky

Publisher: Springer Science & Business Media

ISBN: 0817647716

Category: Mathematics

Page: 523

View: 8376

"This book revives and vastly expands the classical theory of resultants and discriminants. Most of the main new results of the book have been published earlier in more than a dozen joint papers of the authors. The book nicely complements these original papers with many examples illustrating both old and new results of the theory."—Mathematical Reviews

Advanced Analytic Number Theory

L-Functions

Author: Carlos J. Moreno

Publisher: American Mathematical Soc.

ISBN: 0821842668

Category: Mathematics

Page: 291

View: 2570

Since the pioneering work of Euler, Dirichlet, and Riemann, the analytic properties of L-functions have been used to study the distribution of prime numbers. With the advent of the Langlands Program, L-functions have assumed a greater role in the study of the interplay between Diophantine questions about primes and representation theoretic properties of Galois representations. The present book provides a complete introduction to the most significant class of L-functions: the Artin-Hecke L-functions associated to finite-dimensional representations of Weil groups and to automorphic L-functions of principal type on the general linear group. In addition to establishing functional equations, growth estimates, and non-vanishing theorems, a thorough presentation of the explicit formulas of Riemann type in the context of Artin-Hecke and automorphic L-functions is also given. The survey is aimed at mathematicians and graduate students who want to learn about the modern analytic theory of L-functions and their applications in number theory and in the theory of automorphic representations. The requirements for a profitable study of this monograph are a knowledge of basic number theory and the rudiments of abstract harmonic analysis on locally compact abelian groups.

Problems and Theorems in Analysis

Series · Integral Calculus · Theory of Functions

Author: Georg Polya,Gabor Szegö

Publisher: Springer Science & Business Media

ISBN: 1475716400

Category: Mathematics

Page: 392

View: 1480

The present English edition is not a mere translation of the German original. Many new problems have been added and there are also other changes, mostly minor. Yet all the alterations amount to less than ten percent of the text. We intended to keep intact the general plan and the original flavor of the work. Thus we have not introduced any essentially new subject matter, although the mathematical fashion has greatly changed since 1924. We have restricted ourselves to supplementing the topics originally chosen. Some of our problems first published in this work have given rise to extensive research. To include all such developments would have changed the character of the work, and even an incomplete account, which would be unsatisfactory in itself, would have cost too much labor and taken up too much space. We have to thank many readers who, since the publication of this work almost fifty years ago, communicated to us various remarks on it, some of which have been incorporated into this edition. We have not listed their names; we have forgotten the origin of some contributions, and an incomplete list would have been even less desirable than no list. The first volume has been translated by Mrs. Dorothee Aeppli, the second volume by Professor Claude Billigheimer. We wish to express our warmest thanks to both for the unselfish devotion and scrupulous conscientiousness with which they attacked their far from easy task.

Algorithms in Real Algebraic Geometry

Author: Saugata Basu,Richard Pollack,Marie-Françoise Roy

Publisher: Springer Science & Business Media

ISBN: 3540330984

Category: Mathematics

Page: 662

View: 3566

This is the first graduate textbook on the algorithmic aspects of real algebraic geometry. The main ideas and techniques presented form a coherent and rich body of knowledge. Mathematicians will find relevant information about the algorithmic aspects. Researchers in computer science and engineering will find the required mathematical background. Being self-contained the book is accessible to graduate students and even, for invaluable parts of it, to undergraduate students. This second edition contains several recent results on discriminants of symmetric matrices and other relevant topics.

Advanced Calculus

Revised

Author: Lynn Harold Loomis,Shlomo Sternberg

Publisher: World Scientific Publishing Company

ISBN: 9814583952

Category: Mathematics

Page: 596

View: 8963

An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades. This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis. The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives. In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.

Perspectives on Projective Geometry

A Guided Tour Through Real and Complex Geometry

Author: Jürgen Richter-Gebert

Publisher: Springer Science & Business Media

ISBN: 9783642172861

Category: Mathematics

Page: 571

View: 5489

Projective geometry is one of the most fundamental and at the same time most beautiful branches of geometry. It can be considered the common foundation of many other geometric disciplines like Euclidean geometry, hyperbolic and elliptic geometry or even relativistic space-time geometry. This book offers a comprehensive introduction to this fascinating field and its applications. In particular, it explains how metric concepts may be best understood in projective terms. One of the major themes that appears throughout this book is the beauty of the interplay between geometry, algebra and combinatorics. This book can especially be used as a guide that explains how geometric objects and operations may be most elegantly expressed in algebraic terms, making it a valuable resource for mathematicians, as well as for computer scientists and physicists. The book is based on the author’s experience in implementing geometric software and includes hundreds of high-quality illustrations.

Ideals, Varieties, and Algorithms

An Introduction to Computational Algebraic Geometry and Commutative Algebra

Author: David A. Cox,John Little,Donal O'Shea

Publisher: Springer

ISBN: 3319167219

Category: Mathematics

Page: 646

View: 7253

This text covers topics in algebraic geometry and commutative algebra with a strong perspective toward practical and computational aspects. The first four chapters form the core of the book. A comprehensive chart in the Preface illustrates a variety of ways to proceed with the material once these chapters are covered. In addition to the fundamentals of algebraic geometry—the elimination theorem, the extension theorem, the closure theorem and the Nullstellensatz—this new edition incorporates several substantial changes, all of which are listed in the Preface. The largest revision incorporates a new Chapter (ten), which presents some of the essentials of progress made over the last decades in computing Gröbner bases. The book also includes current computer algebra material in Appendix C and updated independent projects (Appendix D). The book may serve as a first or second course in undergraduate abstract algebra and with some supplementation perhaps, for beginning graduate level courses in algebraic geometry or computational algebra. Prerequisites for the reader include linear algebra and a proof-oriented course. It is assumed that the reader has access to a computer algebra system. Appendix C describes features of MapleTM, Mathematica® and Sage, as well as other systems that are most relevant to the text. Pseudocode is used in the text; Appendix B carefully describes the pseudocode used. From the reviews of previous editions: “...The book gives an introduction to Buchberger’s algorithm with applications to syzygies, Hilbert polynomials, primary decompositions. There is an introduction to classical algebraic geometry with applications to the ideal membership problem, solving polynomial equations and elimination theory. ...The book is well-written. ...The reviewer is sure that it will be an excellent guide to introduce further undergraduates in the algorithmic aspect of commutative algebra and algebraic geometry.” —Peter Schenzel, zbMATH, 2007 “I consider the book to be wonderful. ... The exposition is very clear, there are many helpful pictures and there are a great many instructive exercises, some quite challenging ... offers the heart and soul of modern commutative and algebraic geometry.” —The American Mathematical Monthly

Advanced Algebra

Author: Anthony W. Knapp

Publisher: Springer Science & Business Media

ISBN: 0817646132

Category: Mathematics

Page: 730

View: 8393

Basic Algebra and Advanced Algebra systematically develop concepts and tools in algebra that are vital to every mathematician, whether pure or applied, aspiring or established. Advanced Algebra includes chapters on modern algebra which treat various topics in commutative and noncommutative algebra and provide introductions to the theory of associative algebras, homological algebras, algebraic number theory, and algebraic geometry. Many examples and hundreds of problems are included, along with hints or complete solutions for most of the problems. Together the two books give the reader a global view of algebra and its role in mathematics as a whole.

Random Polynomials

Probability and Mathematical Statistics: A Series of Monographs and Textbooks

Author: A. T. Bharucha-Reid,M. Sambandham

Publisher: Academic Press

ISBN: 148319146X

Category: Mathematics

Page: 222

View: 5637

Probability and Mathematical Statistics: A Series of Monographs and Textbooks: Random Polynomials focuses on a comprehensive treatment of random algebraic, orthogonal, and trigonometric polynomials. The publication first offers information on the basic definitions and properties of random algebraic polynomials and random matrices. Discussions focus on Newton's formula for random algebraic polynomials, random characteristic polynomials, measurability of the zeros of a random algebraic polynomial, and random power series and random algebraic polynomials. The text then elaborates on the number and expected number of real zeros of random algebraic polynomials; number and expected number of real zeros of other random polynomials; and variance of the number of real zeros of random algebraic polynomials. Topics include the expected number of real zeros of random orthogonal polynomials and the number and expected number of real zeros of trigonometric polynomials. The book takes a look at convergence and limit theorems for random polynomials and distribution of the zeros of random algebraic polynomials, including limit theorems for random algebraic polynomials and random companion matrices and distribution of the zeros of random algebraic polynomials. The publication is a dependable reference for probabilists, statisticians, physicists, engineers, and economists.

Numerically Solving Polynomial Systems with Bertini

Author: Daniel J. Bates,Jonathan D. Hauenstein,Andrew J. Sommese,Charles W. Wampler

Publisher: SIAM

ISBN: 1611972698

Category: Science

Page: 352

View: 4815

This book is a guide to concepts and practice in numerical algebraic geometry ? the solution of systems of polynomial equations by numerical methods. Through numerous examples, the authors show how to apply the well-received and widely used open-source Bertini software package to compute solutions, including a detailed manual on syntax and usage options. The authors also maintain a complementary web page where readers can find supplementary materials and Bertini input files. Numerically Solving Polynomial Systems with Bertini approaches numerical algebraic geometry from a user's point of view with numerous examples of how Bertini is applicable to polynomial systems. It treats the fundamental task of solving a given polynomial system and describes the latest advances in the field, including algorithms for intersecting and projecting algebraic sets, methods for treating singular sets, the nascent field of real numerical algebraic geometry, and applications to large polynomial systems arising from differential equations. Those who wish to solve polynomial systems can start gently by finding isolated solutions to small systems, advance rapidly to using algorithms for finding positive-dimensional solution sets (curves, surfaces, etc.), and learn how to use parallel computers on large problems. These techniques are of interest to engineers and scientists in fields where polynomial equations arise, including robotics, control theory, economics, physics, numerical PDEs, and computational chemistry.

Methods of Mathematical Physics

Author: Richard Courant,D. Hilbert

Publisher: John Wiley & Sons

ISBN: 3527617221

Category: Science

Page: 575

View: 7003

Since the first volume of this work came out in Germany in 1924, this book, together with its second volume, has remained standard in the field. Courant and Hilbert's treatment restores the historically deep connections between physical intuition and mathematical development, providing the reader with a unified approach to mathematical physics. The present volume represents Richard Courant's second and final revision of 1953.