Randomized Algorithms

Author: Rajeev Motwani,Prabhakar Raghavan

Publisher: Cambridge University Press

ISBN: 9780521474658

Category: Computers

Page: 476

View: 7239

For many applications, a randomized algorithm is either the simplest or the fastest algorithm available, and sometimes both. This book introduces the basic concepts in the design and analysis of randomized algorithms. The first part of the text presents basic tools such as probability theory and probabilistic analysis that are frequently used in algorithmic applications. Algorithmic examples are also given to illustrate the use of each tool in a concrete setting. In the second part of the book, each chapter focuses on an important area to which randomized algorithms can be applied, providing a comprehensive and representative selection of the algorithms that might be used in each of these areas. Although written primarily as a text for advanced undergraduates and graduate students, this book should also prove invaluable as a reference for professionals and researchers.

Probability and Computing

Randomized Algorithms and Probabilistic Analysis

Author: Michael Mitzenmacher,Eli Upfal

Publisher: Cambridge University Press

ISBN: 9780521835404

Category: Computers

Page: 352

View: 6245

Randomization and probabilistic techniques play an important role in modern computer science, with applications ranging from combinatorial optimization and machine learning to communication networks and secure protocols.Assuming only an elementary background in discrete mathematics, this textbook is designed to accompany a one- or two-semester course for advanced undergraduates or beginning graduate students in computer science and applied mathematics. It gives an excellent introduction to the probabilistic techniques and paradigms used in the development of probabilistic algorithms and analyses, including random sampling, expectations, Markov's and Chevyshev's inequalities, Chernoff bounds, balls and bins models, the probabilistic method, Markov chains, MCMC, martingales, entropy, and other topics.

Design and Analysis of Randomized Algorithms

Introduction to Design Paradigms

Author: J. Hromkovic

Publisher: Springer Science & Business Media

ISBN: 3540279032

Category: Computers

Page: 277

View: 3325

Systematically teaches key paradigmic algorithm design methods Provides a deep insight into randomization

Randomized Algorithms for Analysis and Control of Uncertain Systems

With Applications

Author: Roberto Tempo,Giuseppe Calafiore,Fabrizio Dabbene

Publisher: Springer Science & Business Media

ISBN: 1447146107

Category: Technology & Engineering

Page: 360

View: 4757

The presence of uncertainty in a system description has always been a critical issue in control. The main objective of Randomized Algorithms for Analysis and Control of Uncertain Systems, with Applications (Second Edition) is to introduce the reader to the fundamentals of probabilistic methods in the analysis and design of systems subject to deterministic and stochastic uncertainty. The approach propounded by this text guarantees a reduction in the computational complexity of classical control algorithms and in the conservativeness of standard robust control techniques. The second edition has been thoroughly updated to reflect recent research and new applications with chapters on statistical learning theory, sequential methods for control and the scenario approach being completely rewritten. Features: · self-contained treatment explaining Monte Carlo and Las Vegas randomized algorithms from their genesis in the principles of probability theory to their use for system analysis; · development of a novel paradigm for (convex and nonconvex) controller synthesis in the presence of uncertainty and in the context of randomized algorithms; · comprehensive treatment of multivariate sample generation techniques, including consideration of the difficulties involved in obtaining identically and independently distributed samples; · applications of randomized algorithms in various endeavours, such as PageRank computation for the Google Web search engine, unmanned aerial vehicle design (both new in the second edition), congestion control of high-speed communications networks and stability of quantized sampled-data systems. Randomized Algorithms for Analysis and Control of Uncertain Systems (second edition) is certain to interest academic researchers and graduate control students working in probabilistic, robust or optimal control methods and control engineers dealing with system uncertainties. The present book is a very timely contribution to the literature. I have no hesitation in asserting that it will remain a widely cited reference work for many years. M. Vidyasagar

Computational Geometry

An Introduction Through Randomized Algorithms

Author: Ketan Mulmuley

Publisher: Prentice Hall

ISBN: N.A

Category: Computers

Page: 447

View: 3034

This introduction to computational geometry is designed for beginners. It emphasizes simple randomized methods, developing basic principles with the help of planar applications, beginning with deterministic algorithms and shifting to randomized algorithms as the problems become more complex. It also explores higher dimensional advanced applications and provides exercises.

Randomized Algorithms: Approximation, Generation, and Counting

Author: Russ Bubley

Publisher: Springer Science & Business Media

ISBN: 1447106954

Category: Computers

Page: 152

View: 470

Randomized Algorithms discusses two problems of fine pedigree: counting and generation, both of which are of fundamental importance to discrete mathematics and probability. When asking questions like "How many are there?" and "What does it look like on average?" of families of combinatorial structures, answers are often difficult to find -- we can be blocked by seemingly intractable algorithms. Randomized Algorithms shows how to get around the problem of intractability with the Markov chain Monte Carlo method, as well as highlighting the method's natural limits. It uses the technique of coupling before introducing "path coupling" a new technique which radically simplifies and improves upon previous methods in the area.

Randomized Algorithms for Matrices and Data

Author: Michael W. Mahoney

Publisher: N.A

ISBN: 9781601985064

Category: Computers

Page: 114

View: 4221

Randomized Algorithms for Matrices and Data provides a detailed overview, appropriate for both students and researchers from all of these areas, of recent work on the theory of randomized matrix algorithms as well as the application of those ideas to the solution of practical problems in large-scale data analysis

Randomized Algorithms in Automatic Control and Data Mining

Author: Oleg Granichin,Zeev Vladimir Volkovich,Dvora Toledano-Kitai

Publisher: Springer

ISBN: 3642547869

Category: Computers

Page: 251

View: 8046

In the fields of data mining and control, the huge amount of unstructured data and the presence of uncertainty in system descriptions have always been critical issues. The book Randomized Algorithms in Automatic Control and Data Mining introduces the readers to the fundamentals of randomized algorithm applications in data mining (especially clustering) and in automatic control synthesis. The methods proposed in this book guarantee that the computational complexity of classical algorithms and the conservativeness of standard robust control techniques will be reduced. It is shown that when a problem requires "brute force" in selecting among options, algorithms based on random selection of alternatives offer good results with certain probability for a restricted time and significantly reduce the volume of operations.

Primality Testing in Polynomial Time

From Randomized Algorithms to "PRIMES Is in P"

Author: Martin Dietzfelbinger

Publisher: Springer Science & Business Media

ISBN: 3540403442

Category: Computers

Page: 147

View: 4039

On August 6, 2002,a paper with the title “PRIMES is in P”, by M. Agrawal, N. Kayal, and N. Saxena, appeared on the website of the Indian Institute of Technology at Kanpur, India. In this paper it was shown that the “primality problem”hasa“deterministic algorithm” that runs in “polynomial time”. Finding out whether a given number n is a prime or not is a problem that was formulated in ancient times, and has caught the interest of mathema- ciansagainandagainfor centuries. Onlyinthe 20thcentury,with theadvent of cryptographic systems that actually used large prime numbers, did it turn out to be of practical importance to be able to distinguish prime numbers and composite numbers of signi?cant size. Readily, algorithms were provided that solved the problem very e?ciently and satisfactorily for all practical purposes, and provably enjoyed a time bound polynomial in the number of digits needed to write down the input number n. The only drawback of these algorithms is that they use “randomization” — that means the computer that carries out the algorithm performs random experiments, and there is a slight chance that the outcome might be wrong, or that the running time might not be polynomial. To ?nd an algorithmthat gets by without rand- ness, solves the problem error-free, and has polynomial running time had been an eminent open problem in complexity theory for decades when the paper by Agrawal, Kayal, and Saxena hit the web.

R Data Structures and Algorithms

Author: Dr. PKS Prakash,Achyutuni Sri Krishna Rao

Publisher: Packt Publishing Ltd

ISBN: 1786464160

Category: Computers

Page: 276

View: 9874

Increase speed and performance of your applications with efficient data structures and algorithms About This Book See how to use data structures such as arrays, stacks, trees, lists, and graphs through real-world examples Find out about important and advanced data structures such as searching and sorting algorithms Understand important concepts such as big-o notation, dynamic programming, and functional data structured Who This Book Is For This book is for R developers who want to use data structures efficiently. Basic knowledge of R is expected. What You Will Learn Understand the rationality behind data structures and algorithms Understand computation evaluation of a program featuring asymptotic and empirical algorithm analysis Get to know the fundamentals of arrays and linked-based data structures Analyze types of sorting algorithms Search algorithms along with hashing Understand linear and tree-based indexing Be able to implement a graph including topological sort, shortest path problem, and Prim's algorithm Understand dynamic programming (Knapsack) and randomized algorithms In Detail In this book, we cover not only classical data structures, but also functional data structures. We begin by answering the fundamental question: why data structures? We then move on to cover the relationship between data structures and algorithms, followed by an analysis and evaluation of algorithms. We introduce the fundamentals of data structures, such as lists, stacks, queues, and dictionaries, using real-world examples. We also cover topics such as indexing, sorting, and searching in depth. Later on, you will be exposed to advanced topics such as graph data structures, dynamic programming, and randomized algorithms. You will come to appreciate the intricacies of high performance and scalable programming using R. We also cover special R data structures such as vectors, data frames, and atomic vectors. With this easy-to-read book, you will be able to understand the power of linked lists, double linked lists, and circular linked lists. We will also explore the application of binary search and will go in depth into sorting algorithms such as bubble sort, selection sort, insertion sort, and merge sort. Style and approach This easy-to-read book with its fast-paced nature will improve the productivity of an R programmer and improve the performance of R applications. It is packed with real-world examples.

Handbook of randomized computing. 1

Author: Sanguthevar Rajasekaran

Publisher: Springer Science & Business Media

ISBN: 9780792369578

Category: Computers

Page: 941

View: 8829

Probability and Computing

Randomization and Probabilistic Techniques in Algorithms and Data Analysis

Author: Michael Mitzenmacher,Eli Upfal

Publisher: Cambridge University Press

ISBN: 110715488X

Category: Computers

Page: 488

View: 8648

Greatly expanded, this new edition requires only an elementary background in discrete mathematics and offers a comprehensive introduction to the role of randomization and probabilistic techniques in modern computer science. Newly added chapters and sections cover topics including normal distributions, sample complexity, VC dimension, Rademacher complexity, power laws and related distributions, cuckoo hashing, and the Lovasz Local Lemma. Material relevant to machine learning and big data analysis enables students to learn modern techniques and applications. Among the many new exercises and examples are programming-related exercises that provide students with excellent training in solving relevant problems. This book provides an indispensable teaching tool to accompany a one- or two-semester course for advanced undergraduate students in computer science and applied mathematics.

Algorithmics for Hard Problems

Introduction to Combinatorial Optimization, Randomization, Approximation, and Heuristics

Author: Juraj Hromkovič

Publisher: Springer Science & Business Media

ISBN: 3662046164

Category: Computers

Page: 494

View: 5035

An introduction to the methods of designing algorithms for hard computing tasks, concentrating mainly on approximate, randomized, and heuristic algorithms, and on the theoretical and experimental comparison of these approaches according to the requirements of the practice. This is the first book to systematically explain and compare all the main possibilities of attacking hard computing problems. It also closes the gap between theory and practice by providing at once a graduate textbook and a handbook for practitioners dealing with hard computing problems.

The Design of Approximation Algorithms

Author: David P. Williamson,David B. Shmoys

Publisher: Cambridge University Press

ISBN: 1139498177

Category: Computers

Page: N.A

View: 3794

Discrete optimization problems are everywhere, from traditional operations research planning (scheduling, facility location and network design); to computer science databases; to advertising issues in viral marketing. Yet most such problems are NP-hard; unless P = NP, there are no efficient algorithms to find optimal solutions. This book shows how to design approximation algorithms: efficient algorithms that find provably near-optimal solutions. The book is organized around central algorithmic techniques for designing approximation algorithms, including greedy and local search algorithms, dynamic programming, linear and semidefinite programming, and randomization. Each chapter in the first section is devoted to a single algorithmic technique applied to several different problems, with more sophisticated treatment in the second section. The book also covers methods for proving that optimization problems are hard to approximate. Designed as a textbook for graduate-level algorithm courses, it will also serve as a reference for researchers interested in the heuristic solution of discrete optimization problems.

Introduction to Algorithms

Author: Thomas H. Cormen

Publisher: MIT Press

ISBN: 0262533057

Category: Computers

Page: 1292

View: 1327

A new edition of the essential text and professional reference, with substantial new material on such topics as vEB trees, multithreaded algorithms, dynamic programming, and edge-based flow.

Probabilistic Methods for Algorithmic Discrete Mathematics

Author: Michel Habib,Colin McDiarmid,Jorge Ramirez-Alfonsin,Bruce Reed

Publisher: Springer Science & Business Media

ISBN: 3662127881

Category: Mathematics

Page: 325

View: 1021

Leave nothing to chance. This cliche embodies the common belief that ran domness has no place in carefully planned methodologies, every step should be spelled out, each i dotted and each t crossed. In discrete mathematics at least, nothing could be further from the truth. Introducing random choices into algorithms can improve their performance. The application of proba bilistic tools has led to the resolution of combinatorial problems which had resisted attack for decades. The chapters in this volume explore and celebrate this fact. Our intention was to bring together, for the first time, accessible discus sions of the disparate ways in which probabilistic ideas are enriching discrete mathematics. These discussions are aimed at mathematicians with a good combinatorial background but require only a passing acquaintance with the basic definitions in probability (e.g. expected value, conditional probability). A reader who already has a firm grasp on the area will be interested in the original research, novel syntheses, and discussions of ongoing developments scattered throughout the book. Some of the most convincing demonstrations of the power of these tech niques are randomized algorithms for estimating quantities which are hard to compute exactly. One example is the randomized algorithm of Dyer, Frieze and Kannan for estimating the volume of a polyhedron. To illustrate these techniques, we consider a simple related problem. Suppose S is some region of the unit square defined by a system of polynomial inequalities: Pi (x. y) ~ o.