Real Analysis

Author: Brian S. Thomson,Andrew M. Bruckner,Judith B. Bruckner

Publisher: ClassicalRealAnalysis.com

ISBN: 1434844129

Category: Mathematics

Page: 642

View: 3731

This is the second edition of a graduate level real analysis textbook formerly published by Prentice Hall (Pearson) in 1997. This edition contains both volumes. Volumes one and two can also be purchased separately in smaller, more convenient sizes.

Real Analysis

Author: N. L. Carothers

Publisher: Cambridge University Press

ISBN: 9780521497565

Category: Mathematics

Page: 401

View: 1884

A text for a first graduate course in real analysis for students in pure and applied mathematics, statistics, education, engineering, and economics.

Real Analysis

Author: Emmanuele DiBenedetto

Publisher: Springer Science & Business Media

ISBN: 9780817642310

Category: Mathematics

Page: 485

View: 6700

The focus of this modern graduate text in real analysis is to prepare the potential researcher to a rigorous "way of thinking" in applied mathematics and partial differential equations. The book will provide excellent foundations and serve as a solid building block for research in analysis, PDEs, the calculus of variations, probability, and approximation theory. All the core topics of the subject are covered, from a basic introduction to functional analysis, to measure theory, integration and weak differentiation of functions, and in a presentation that is hands-on, with little or no unnecessary abstractions. Additional features: * Carefully chosen topics, some not touched upon elsewhere: fine properties of integrable functions as they arise in applied mathematics and PDEs – Radon measures, the Lebesgue Theorem for general Radon measures, the Besicovitch covering Theorem, the Rademacher Theorem; topics in Marcinkiewicz integrals, functions of bounded variation, Legendre transform and the characterization of compact subset of some metric function spaces and in particular of Lp spaces * Constructive presentation of the Stone-Weierstrass Theorem * More specialized chapters (8-10) cover topics often absent from classical introductiory texts in analysis: maximal functions and weak Lp spaces, the Calderón-Zygmund decomposition, functions of bounded mean oscillation, the Stein-Fefferman Theorem, the Marcinkiewicz Interpolation Theorem, potential theory, rearrangements, estimations of Riesz potentials including limiting cases * Provides a self-sufficient introduction to Sobolev Spaces, Morrey Spaces and Poincaré inequalities as the backbone of PDEs and as an essential environment to develop modern and current analysis * Comprehensive index This clear, user-friendly exposition of real analysis covers a great deal of territory in a concise fashion, with sufficient motivation and examples throughout. A number of excellent problems, as well as some remarkable features of the exercises, occur at the end of every chapter, which point to additional theorems and results. Stimulating open problems are proposed to engage students in the classroom or in a self-study setting.

Real Analysis and Foundations, Fourth Edition

Author: Steven G. Krantz

Publisher: CRC Press

ISBN: 1498777694

Category: Mathematics

Page: 430

View: 1876

A Readable yet Rigorous Approach to an Essential Part of Mathematical Thinking Back by popular demand, Real Analysis and Foundations, Third Edition bridges the gap between classic theoretical texts and less rigorous ones, providing a smooth transition from logic and proofs to real analysis. Along with the basic material, the text covers Riemann-Stieltjes integrals, Fourier analysis, metric spaces and applications, and differential equations. New to the Third Edition Offering a more streamlined presentation, this edition moves elementary number systems and set theory and logic to appendices and removes the material on wavelet theory, measure theory, differential forms, and the method of characteristics. It also adds a chapter on normed linear spaces and includes more examples and varying levels of exercises. Extensive Examples and Thorough Explanations Cultivate an In-Depth Understanding This best-selling book continues to give students a solid foundation in mathematical analysis and its applications. It prepares them for further exploration of measure theory, functional analysis, harmonic analysis, and beyond.

Elements of Real Analysis

Author: M.A. Al-Gwaiz,S.A. Elsanousi

Publisher: CRC Press

ISBN: 142001160X

Category: Mathematics

Page: 436

View: 7062

Focusing on one of the main pillars of mathematics, Elements of Real Analysis provides a solid foundation in analysis, stressing the importance of two elements. The first building block comprises analytical skills and structures needed for handling the basic notions of limits and continuity in a simple concrete setting while the second component involves conducting analysis in higher dimensions and more abstract spaces. Largely self-contained, the book begins with the fundamental axioms of the real number system and gradually develops the core of real analysis. The first few chapters present the essentials needed for analysis, including the concepts of sets, relations, and functions. The following chapters cover the theory of calculus on the real line, exploring limits, convergence tests, several functions such as monotonic and continuous, power series, and theorems like mean value, Taylor's, and Darboux's. The final chapters focus on more advanced theory, in particular, the Lebesgue theory of measure and integration. Requiring only basic knowledge of elementary calculus, this textbook presents the necessary material for a first course in real analysis. Developed by experts who teach such courses, it is ideal for undergraduate students in mathematics and related disciplines, such as engineering, statistics, computer science, and physics, to understand the foundations of real analysis.

REAL ANALYSIS

Author: DIPAK CHATTERJEE

Publisher: PHI Learning Pvt. Ltd.

ISBN: 8120345215

Category: Mathematics

Page: 816

View: 1154

This revised edition provides an excellent introduction to topics in Real Analysis through an elaborate exposition of all fundamental concepts and results. The treatment is rigorous and exhaustive—both classical and modern topics are presented in a lucid manner in order to make this text appealing to students. Clear explanations, many detailed worked examples and several challenging ones included in the exercises, enable students to develop problem-solving skills and foster critical thinking. The coverage of the book is incredibly comprehensive, with due emphasis on Lebesgue theory, metric spaces, uniform convergence, Riemann–Stieltjes integral, multi-variable theory, Fourier series, improper integration, and parametric integration. The book is suitable for a complete course in real analysis at the advanced undergraduate or postgraduate level.

Real Analysis

Modern Techniques and Their Applications

Author: Gerald B. Folland

Publisher: John Wiley & Sons

ISBN: 1118626397

Category: Mathematics

Page: 416

View: 7412

An in-depth look at real analysis and its applications-now expandedand revised. This new edition of the widely used analysis book continues tocover real analysis in greater detail and at a more advanced levelthan most books on the subject. Encompassing several subjects thatunderlie much of modern analysis, the book focuses on measure andintegration theory, point set topology, and the basics offunctional analysis. It illustrates the use of the general theoriesand introduces readers to other branches of analysis such asFourier analysis, distribution theory, and probabilitytheory. This edition is bolstered in content as well as in scope-extendingits usefulness to students outside of pure analysis as well asthose interested in dynamical systems. The numerous exercises,extensive bibliography, and review chapter on sets and metricspaces make Real Analysis: Modern Techniques and TheirApplications, Second Edition invaluable for students ingraduate-level analysis courses. New features include: * Revised material on the n-dimensional Lebesgue integral. * An improved proof of Tychonoff's theorem. * Expanded material on Fourier analysis. * A newly written chapter devoted to distributions and differentialequations. * Updated material on Hausdorff dimension and fractal dimension.

Golden Real Analysis

Author: N.P. Bali

Publisher: Firewall Media

ISBN: 9788170080145

Category: Mathematical analysis

Page: 814

View: 1567

Problems and Solutions in Real Analysis

Author: Masayoshi Hata

Publisher: World Scientific

ISBN: 981277601X

Category: Mathematics

Page: 292

View: 6239

This unique book provides a collection of more than 200 mathematical problems and their detailed solutions, which contain very useful tips and skills in real analysis. Each chapter has an introduction, in which some fundamental definitions and propositions are prepared. This also contains many brief historical comments on some significant mathematical results in real analysis together with useful references.Problems and Solutions in Real Analysis may be used as advanced exercises by undergraduate students during or after courses in calculus and linear algebra. It is also useful for graduate students who are interested in analytic number theory. Readers will also be able to completely grasp a simple and elementary proof of the prime number theorem through several exercises. The book is also suitable for non-experts who wish to understand mathematical analysis.

The Real Numbers and Real Analysis

Author: Ethan D. Bloch

Publisher: Springer Science & Business Media

ISBN: 0387721762

Category: Mathematics

Page: 554

View: 5097

This text is a rigorous, detailed introduction to real analysis that presents the fundamentals with clear exposition and carefully written definitions, theorems, and proofs. It is organized in a distinctive, flexible way that would make it equally appropriate to undergraduate mathematics majors who want to continue in mathematics, and to future mathematics teachers who want to understand the theory behind calculus. The Real Numbers and Real Analysis will serve as an excellent one-semester text for undergraduates majoring in mathematics, and for students in mathematics education who want a thorough understanding of the theory behind the real number system and calculus.

Elements of Real Analysis

Author: Charles G. Denlinger

Publisher: Jones & Bartlett Learning

ISBN: 0763779474

Category: Mathematics

Page: 739

View: 9763

Elementary Real Analysis is a core course in nearly all mathematics departments throughout the world. It enables students to develop a deep understanding of the key concepts of calculus from a mature perspective. Elements of Real Analysis is a student-friendly guide to learning all the important ideas of elementary real analysis, based on the author's many years of experience teaching the subject to typical undergraduate mathematics majors. It avoids the compact style of professional mathematics writing, in favor of a style that feels more comfortable to students encountering the subject for the first time. It presents topics in ways that are most easily understood, yet does not sacrifice rigor or coverage. In using this book, students discover that real analysis is completely deducible from the axioms of the real number system. They learn the powerful techniques of limits of sequences as the primary entry to the concepts of analysis, and see the ubiquitous role sequences play in virtually all later topics. They become comfortable with topological ideas, and see how these concepts help unify the subject. Students encounter many interesting examples, including "pathological" ones, that motivate the subject and help fix the concepts. They develop a unified understanding of limits, continuity, differentiability, Riemann integrability, and infinite series of numbers and functions.

Real Analysis

A Historical Approach

Author: Saul Stahl

Publisher: John Wiley & Sons

ISBN: 1118096851

Category: Mathematics

Page: 316

View: 9315

A provocative look at the tools and history of realanalysis This new edition of Real Analysis: A Historical Approachcontinues to serve as an interesting read for students of analysis.Combining historical coverage with a superb introductory treatment,this book helps readers easily make the transition from concrete toabstract ideas. The book begins with an exciting sampling of classic and famousproblems first posed by some of the greatest mathematicians of alltime. Archimedes, Fermat, Newton, and Euler are each summoned inturn, illuminating the utility of infinite, power, andtrigonometric series in both pure and applied mathematics. Next,Dr. Stahl develops the basic tools of advanced calculus, whichintroduce the various aspects of the completeness of the realnumber system as well as sequential continuity anddifferentiability and lead to the Intermediate and Mean ValueTheorems. The Second Edition features: A chapter on the Riemann integral, including the subject ofuniform continuity Explicit coverage of the epsilon-delta convergence A discussion of the modern preference for the viewpoint ofsequences over that of series Throughout the book, numerous applications and examplesreinforce concepts and demonstrate the validity of historicalmethods and results, while appended excerpts from originalhistorical works shed light on the concerns of influentialmathematicians in addition to the difficulties encountered in theirwork. Each chapter concludes with exercises ranging in level ofcomplexity, and partial solutions are provided at the end of thebook. Real Analysis: A Historical Approach, Second Edition isan ideal book for courses on real analysis and mathematicalanalysis at the undergraduate level. The book is also a valuableresource for secondary mathematics teachers and mathematicians.

A Radical Approach to Real Analysis

Author: David M. Bressoud

Publisher: MAA

ISBN: 9780883857472

Category: Mathematics

Page: 323

View: 7005

Second edition of this introduction to real analysis, rooted in the historical issues that shaped its development.

Elements of Real Analysis

Author: David A. Sprecher

Publisher: Courier Corporation

ISBN: 0486153258

Category: Mathematics

Page: 368

View: 8566

Classic text explores intermediate steps between basics of calculus and ultimate stage of mathematics — abstraction and generalization. Covers fundamental concepts, real number system, point sets, functions of a real variable, Fourier series, more. Over 500 exercises.

Real Analysis and Probability

Author: R. M. Dudley

Publisher: CRC Press

ISBN: 135108464X

Category: Mathematics

Page: 450

View: 473

Written by one of the best-known probabilists in the world this text offers a clear and modern presentation of modern probability theory and an exposition of the interplay between the properties of metric spaces and those of probability measures. This text is the first at this level to include discussions of the subadditive ergodic theorems, metrics for convergence in laws and the Borel isomorphism theory. The proofs for the theorems are consistently brief and clear and each chapter concludes with a set of historical notes and references. This book should be of interest to students taking degree courses in real analysis and/or probability theory.

A Concrete Introduction to Real Analysis, Second Edition

Author: Robert Carlson

Publisher: CRC Press

ISBN: 1498778143

Category: Mathematics

Page: 298

View: 6112

The Second Edition offers a major re-organization of the book, with the goal of making it much more competitive as a text for students. The revised edition will be appropriate for a one- or two-semester introductory real analysis course. Like the first edition, the primary audience is the large collection of students who will never take a graduate level analysis course. The choice of topics and level of coverage is suitable for future high school teachers, and for students who will become engineers or other professionals needing a sound working knowledge of undergraduate mathematics.

Introduction to Real Analysis

Author: Michael J. Schramm

Publisher: Courier Corporation

ISBN: 0486131920

Category: Mathematics

Page: 384

View: 7965

This text forms a bridge between courses in calculus and real analysis. Suitable for advanced undergraduates and graduate students, it focuses on the construction of mathematical proofs. 1996 edition.

Real Analysis

Author: N.A

Publisher: Krishna Prakashan Media

ISBN: N.A

Category:

Page: N.A

View: 7821

Fundamentals of Real Analysis

Author: Sterling K. Berberian

Publisher: Springer Science & Business Media

ISBN: 9780387984803

Category: Mathematics

Page: 479

View: 5778

"This book is very well organized and clearly written and contains an adequate supply of exercises. If one is comfortable with the choice of topics in the book, it would be a good candidate for a text in a graduate real analysis course." -- MATHEMATICAL REVIEWS

Real Analysis

A Constructive Approach

Author: Mark Bridger

Publisher: John Wiley & Sons

ISBN: 1118031563

Category: Mathematics

Page: 320

View: 2675

A unique approach to analysis that lets you apply mathematics across a range of subjects This innovative text sets forth a thoroughly rigorous modern account of the theoretical underpinnings of calculus: continuity, differentiability, and convergence. Using a constructive approach, every proof of every result is direct and ultimately computationally verifiable. In particular, existence is never established by showing that the assumption of non-existence leads to a contradiction. The ultimate consequence of this method is that it makes sense—not just to math majors but also to students from all branches of the sciences. The text begins with a construction of the real numbers beginning with the rationals, using interval arithmetic. This introduces readers to the reasoning and proof-writing skills necessary for doing and communicating mathematics, and it sets the foundation for the rest of the text, which includes: Early use of the Completeness Theorem to prove a helpful Inverse Function Theorem Sequences, limits and series, and the careful derivation of formulas and estimates for important functions Emphasis on uniform continuity and its consequences, such as boundedness and the extension of uniformly continuous functions from dense subsets Construction of the Riemann integral for functions uniformly continuous on an interval, and its extension to improper integrals Differentiation, emphasizing the derivative as a function rather than a pointwise limit Properties of sequences and series of continuous and differentiable functions Fourier series and an introduction to more advanced ideas in functional analysis Examples throughout the text demonstrate the application of new concepts. Readers can test their own skills with problems and projects ranging in difficulty from basic to challenging. This book is designed mainly for an undergraduate course, and the author understands that many readers will not go on to more advanced pure mathematics. He therefore emphasizes an approach to mathematical analysis that can be applied across a range of subjects in engineering and the sciences.