Riemannian Geometry

Author: Sylvestre Gallot,Dominique Hulin,Jacques Lafontaine

Publisher: Springer Science & Business Media

ISBN: 3642970265

Category: Mathematics

Page: 248

View: 8013

This book covers the topics of differential manifolds, Riemannian metrics, connections, geodesics and curvature, with special emphasis on the intrinsic features of the subject. It treats in detail classical results on the relations between curvature and topology. The book features numerous exercises with full solutions and a series of detailed examples are picked up repeatedly to illustrate each new definition or property introduced.

Riemannian Geometry

Author: Gérard Besson,Miroslav Lovric,Maung Min-Oo,McKenzie Yuen-kong Wang

Publisher: American Mathematical Soc.

ISBN: 9780821871874

Category: Mathematics

Page: 115

View: 8781

This book is a compendium of survey lectures presented at a conference on Riemannian Geometry sponsored by The Fields Institute for Research in Mathematical Sciences (Waterloo, Canada) in August 1993. Attended by over 80 participants, the aim of the conference was to promote research activity in Riemannian geometry. A select group of internationally established researchers in the field were invited to discuss and present current developments in a selection of contemporary topics in Riemannian geometry. This volume contains four of the five survey lectures presented at the conference.

An Introduction to Riemannian Geometry

With Applications to Mechanics and Relativity

Author: Leonor Godinho,José Natário

Publisher: Springer

ISBN: 3319086669

Category: Mathematics

Page: 467

View: 3443

Unlike many other texts on differential geometry, this textbook also offers interesting applications to geometric mechanics and general relativity. The first part is a concise and self-contained introduction to the basics of manifolds, differential forms, metrics and curvature. The second part studies applications to mechanics and relativity including the proofs of the Hawking and Penrose singularity theorems. It can be independently used for one-semester courses in either of these subjects. The main ideas are illustrated and further developed by numerous examples and over 300 exercises. Detailed solutions are provided for many of these exercises, making An Introduction to Riemannian Geometry ideal for self-study.

Differential Geometry of Curves and Surfaces

A Concise Guide

Author: Victor Andreevich Toponogov

Publisher: Springer Science & Business Media

ISBN: 0817644024

Category: Mathematics

Page: 206

View: 9794

Central topics covered include curves, surfaces, geodesics, intrinsic geometry, and the Alexandrov global angle comparision theorem Many nontrivial and original problems (some with hints and solutions) Standard theoretical material is combined with more difficult theorems and complex problems, while maintaining a clear distinction between the two levels

Riemannian Geometry and Geometric Analysis

Author: Jürgen Jost

Publisher: Springer Science & Business Media

ISBN: 3642212980

Category: Mathematics

Page: 611

View: 3759

This established reference work continues to lead its readers to some of the hottest topics of contemporary mathematical research. The previous edition already introduced and explained the ideas of the parabolic methods that had found a spectacular success in the work of Perelman at the examples of closed geodesics and harmonic forms. It also discussed further examples of geometric variational problems from quantum field theory, another source of profound new ideas and methods in geometry. The 6th edition includes a systematic treatment of eigenvalues of Riemannian manifolds and several other additions. Also, the entire material has been reorganized in order to improve the coherence of the book. From the reviews: "This book provides a very readable introduction to Riemannian geometry and geometric analysis. ... With the vast development of the mathematical subject of geometric analysis, the present textbook is most welcome." Mathematical Reviews "...the material ... is self-contained. Each chapter ends with a set of exercises. Most of the paragraphs have a section ‘Perspectives’, written with the aim to place the material in a broader context and explain further results and directions." Zentralblatt MATH

Differentialgeometrie und Minimalflächen

Author: Jürgen Jost

Publisher: Springer-Verlag

ISBN: 3662067188

Category: Mathematics

Page: 152

View: 1175

Das vorliegende Lehrbuch bietet eine moderne Einführung in die Differentialgeometrie etwa im Umfang einer einsemestrigen Vorlesung. Zunächst wird die Geometrie von Flächen im Raum behandelt. Hierbei wird die geometrische Anschauung des Lesers anhand vieler Beispiele gefördert, deren wichtigste Klasse die Minimalflächen bilden. Zu ihrem Studium werden analytische Methoden entwickelt, und in diesem Zusammenhang wird auch das Plateausche Problem, eine Minimalfläche mit vorgegebener Berandung zu finden, gelöst. Als Beispiel einer globalen Aussage der Differentialgeometrie wird der Bernsteinsche Satz bewiesen. Weitere Kapitel behandeln die innere Geometrie von Flächen, einschließlich des Satzes von Gauss-Bonnet und einer ausführlichen Darstellung der hyperbolischen Geometrie. Verschiedene geistesgeschichtliche Bemerkungen runden diesen Text ab, welcher durch seine Verbindung von geometrischen Konstruktionen und analytischen Methoden einem zentralen Trend der modernen mathematischen Forschung folgt. Das erste Lehrbuch, das eine gründliche Einführung in die Theorie der Minimalflächen gewährleistet.

Riemannian Geometry

Author: Wilhelm Klingenberg

Publisher: Walter de Gruyter

ISBN: 9783110145939

Category: Mathematics

Page: 409

View: 1885

The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 35 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel with the aim to establish a series of monographs and textbooks of high standard, written by scholars with an international reputation presenting current fields of research in pure and applied mathematics. While the editorial board of the Studies has changed with the years, the aspirations of the Studies are unchanged. In times of rapid growth of mathematical knowledge carefully written monographs and textbooks written by experts are needed more than ever, not least to pave the way for the next generation of mathematicians. In this sense the editorial board and the publisher of the Studies are devoted to continue the Studies as a service to the mathematical community. Please submit any book proposals to Niels Jacob. Titles in planning include Wolfgang Herfort, Karl H. Hofmann, and Francesco G. Russo, Periodic Locally Compact Groups: A Study of a Class of Totally Disconnected Topological Groups (2018) Mark M. Meerschaert, Alla Sikorskii, and Mohsen Zayernouri, Stochastic and Computational Models for Fractional Calculus, second edition (2018) Flavia Smarazzo and Alberto Tesei, Measure Theory: Radon Measures, Young Measures, and Applications to Parabolic Problems (2019) Elena Cordero and Luigi Rodino, Time-Frequency Analysis of Operators (2019) Kezheng Li, Group Schemes and Their Actions (2019; together with Tsinghua University Press) Mariusz Lemańczyk, Ergodic Theory: Spectral Theory, Joinings, and Their Applications (2020) Marco Abate, Holomorphic Dynamics on Hyperbolic Complex Manifolds (2021) Miroslava Antic, Joeri Van der Veken, and Luc Vrancken, Differential Geometry of Submanifolds: Submanifolds of Almost Complex Spaces and Almost Product Spaces (2021) Kai Liu, Ilpo Laine, and Lianzhong Yang, Complex Differential-Difference Equations (2021) Rajendra Vasant Gurjar, Kayo Masuda, and Masayoshi Miyanishi, Affine Space Fibrations (2022)

Eigenvalues in Riemannian Geometry

Author: Isaac Chavel

Publisher: Academic Press

ISBN: 9780080874340

Category: Mathematics

Page: 362

View: 4739

The basic goals of the book are: (i) to introduce the subject to those interested in discovering it, (ii) to coherently present a number of basic techniques and results, currently used in the subject, to those working in it, and (iii) to present some of the results that are attractive in their own right, and which lend themselves to a presentation not overburdened with technical machinery.

Einführung in die Geometrie und Topologie

Author: Werner Ballmann

Publisher: Springer-Verlag

ISBN: 3034809018

Category: Mathematics

Page: 162

View: 1080

Das Buch bietet eine Einführung in die Topologie, Differentialtopologie und Differentialgeometrie. Es basiert auf Manuskripten, die in verschiedenen Vorlesungszyklen erprobt wurden. Im ersten Kapitel werden grundlegende Begriffe und Resultate aus der mengentheoretischen Topologie bereitgestellt. Eine Ausnahme hiervon bildet der Jordansche Kurvensatz, der für Polygonzüge bewiesen wird und eine erste Idee davon vermitteln soll, welcher Art tiefere topologische Probleme sind. Im zweiten Kapitel werden Mannigfaltigkeiten und Liesche Gruppen eingeführt und an einer Reihe von Beispielen veranschaulicht. Diskutiert werden auch Tangential- und Vektorraumbündel, Differentiale, Vektorfelder und Liesche Klammern von Vektorfeldern. Weiter vertieft wird diese Diskussion im dritten Kapitel, in dem die de Rhamsche Kohomologie und das orientierte Integral eingeführt und der Brouwersche Fixpunktsatz, der Jordan-Brouwersche Zerlegungssatz und die Integralformel von Stokes bewiesen werden. Das abschließende vierte Kapitel ist den Grundlagen der Differentialgeometrie gewidmet. Entlang der Entwicklungslinien, die die Geometrie der Kurven und Untermannigfaltigkeiten in Euklidischen Räumen durchlaufen hat, werden Zusammenhänge und Krümmung, die zentralen Konzepte der Differentialgeometrie, diskutiert. Den Höhepunkt bilden die Gaussgleichungen, die Version des theorema egregium von Gauss für Untermannigfaltigkeiten beliebiger Dimension und Kodimension. Das Buch richtet sich in erster Linie an Mathematik- und Physikstudenten im zweiten und dritten Studienjahr und ist als Vorlage für ein- oder zweisemestrige Vorlesungen geeignet.

Topics in Geometric Group Theory

Author: Pierre de la Harpe

Publisher: University of Chicago Press

ISBN: 9780226317199

Category: Mathematics

Page: 310

View: 7962

In this book, Pierre de la Harpe provides a concise and engaging introduction to geometric group theory, a new method for studying infinite groups via their intrinsic geometry that has played a major role in mathematics over the past two decades. A recognized expert in the field, de la Harpe adopts a hands-on approach, illustrating key concepts with numerous concrete examples. The first five chapters present basic combinatorial and geometric group theory in a unique and refreshing way, with an emphasis on finitely generated versus finitely presented groups. In the final three chapters, de la Harpe discusses new material on the growth of groups, including a detailed treatment of the "Grigorchuk group." Most sections are followed by exercises and a list of problems and complements, enhancing the book's value for students; problems range from slightly more difficult exercises to open research problems in the field. An extensive list of references directs readers to more advanced results as well as connections with other fields.

Encyclopedia of mathematical physics

Author: Sheung Tsun Tsou

Publisher: Academic Pr

ISBN: 9780125126601

Category: Science

Page: 3500

View: 4827

The Encyclopedia of Mathematical Physics provides a complete resource for researchers, students and lecturers with an interest in mathematical physics. It enables readers to access basic information on topics peripheral to their own areas, to provide a repository of the core information in the area that can be used to refresh the researcher's own memory banks, and aid teachers in directing students to entries relevant to their course-work. The Encyclopedia does contain information that has been distilled, organised and presented as a complete reference tool to the user and a landmark to the body of knowledge that has accumulated in this domain. It also is a stimulus for new researchers working in mathematical physics or in areas using the methods originated from work in mathematical physics by providing them with focused high quality background information. * First comprehensive interdisciplinary coverage * Mathematical Physics explained to stimulate new developments and foster new applications of its methods to other fields * Written by an international group of experts * Contains several undergraduate-level introductory articles to facilitate acquisition of new expertise * Thematic index and extensive cross-referencing to provide easy access and quick search functionality * Also available online with active linking.

Riemannian Geometry and Geometric Analysis

Author: Jürgen Jost

Publisher: Springer Science & Business

ISBN: 9783540259077

Category: Mathematics

Page: 566

View: 6045

This established reference work continues to lead its readers to some of the hottest topics of contemporary mathematical research. Besides several smaller additions, reorganizations, corrections, and a systematic bibliography, the main new features of the 4th edition are a systematic introduction to K??hler geometry and the presentation of additional techniques from geometric analysis. From the reviews: "This book provides a very readable introduction to Riemannian geometry and geometric analysis. The author focuses on using analytic methods in the study of some fundamental theorems in Riemannian geometry, e.g., the Hodge theorem, the Rauch comparison theorem, the Lyusternik and Fet theorem and the existence of harmonic mappings. With the vast development of the mathematical subject of geometric analysis, the present textbook is most welcome. [..] The book is made more interesting by the perspectives in various sections." Math. Reviews

Differential Geometry and Its Applications

Author: John Oprea

Publisher: N.A

ISBN: 9780133407389

Category: Geometry, Differential

Page: 387

View: 9647

Designed not just for the maths specialist but for all students of science, this text provides an introduction to the basics of the calculus of variations and optimal control theory as well as differential geometry. It then applies these essential ideas to understand various phenomena.

Ebene Geometrie

Author: Max Koecher,Aloys Krieg

Publisher: Springer-Verlag

ISBN: 354049328X

Category: Mathematics

Page: 280

View: 5110

"Ebene Geometrie" von Koecher und Krieg betont - anders als vergleichbare Lehrbücher zum Thema - den analytischen Standpunkt. Es bietet eine Einführung in die axiomatische Geometrie affiner und projektiver Ebenen und behandelt die klassische Schulgeometrie mit den Methoden der Linearen Algebra. Weiterführende Ergebnisse sind z.B. die Sätze von Feuerbach, Morley oder Pascal. Neu in dieser Auflage u.a: der Satz von Connes (1999) mit einem neuen Beweis des Satzes von Morley. Die Zeichnungen des Buches sind unter http://www.mathA.rwth-aachen.de/geometrie verfügbar. Ein gut strukturierter Lehrtext mit einer Fülle von Übungsaufgaben.

Kombinatorische Optimierung

Theorie und Algorithmen

Author: Bernhard Korte,Jens Vygen

Publisher: Springer-Verlag

ISBN: 3540769196

Category: Mathematics

Page: 675

View: 6745

Das Lehrbuch ist die deutsche Übersetzung der 4., wesentlich erweiterten Auflage des Titels „Combinatorial Optimization – Theory and Algorithms". Es gibt den neuesten Stand der kombinatorischen Optimierung wieder und liefert vornehmlich theoretische Resultate und Algorithmen mit beweisbar guten Laufzeiten und Ergebnissen, jedoch keine Heuristiken. Enthalten sind vollständige Beweise, auch für viele tiefe und neue Resultate, von denen einige bisher in der Lehrbuchliteratur noch nicht erschienen sind. Mit Übungen und umfassendem Literaturverzeichnis.