Scaling Up Machine Learning

Parallel and Distributed Approaches

Author: Ron Bekkerman,Mikhail Bilenko,John Langford

Publisher: Cambridge University Press

ISBN: 0521192242

Category: Computers

Page: 475

View: 9383

This integrated collection covers a range of parallelization platforms, concurrent programming frameworks and machine learning settings, with case studies.

Machine Learning for Adaptive Many-Core Machines - A Practical Approach

Author: Noel Lopes,Bernardete Ribeiro

Publisher: Springer

ISBN: 3319069381

Category: Computers

Page: 241

View: 897

The overwhelming data produced everyday and the increasing performance and cost requirements of applications are transversal to a wide range of activities in society, from science to industry. In particular, the magnitude and complexity of the tasks that Machine Learning (ML) algorithms have to solve are driving the need to devise adaptive many-core machines that scale well with the volume of data, or in other words, can handle Big Data. This book gives a concise view on how to extend the applicability of well-known ML algorithms in Graphics Processing Unit (GPU) with data scalability in mind. It presents a series of new techniques to enhance, scale and distribute data in a Big Learning framework. It is not intended to be a comprehensive survey of the state of the art of the whole field of machine learning for Big Data. Its purpose is less ambitious and more practical: to explain and illustrate existing and novel GPU-based ML algorithms, not viewed as a universal solution for the Big Data challenges but rather as part of the answer, which may require the use of different strategies coupled together.

Large Scale Machine Learning with Spark

Author: Md. Rezaul Karim,Md. Mahedi Kaysar

Publisher: Packt Publishing Ltd

ISBN: 1785883712

Category: Computers

Page: 476

View: 8174

Discover everything you need to build robust machine learning applications with Spark 2.0 About This Book Get the most up-to-date book on the market that focuses on design, engineering, and scalable solutions in machine learning with Spark 2.0.0 Use Spark's machine learning library in a big data environment You will learn how to develop high-value applications at scale with ease and a develop a personalized design Who This Book Is For This book is for data science engineers and scientists who work with large and complex data sets. You should be familiar with the basics of machine learning concepts, statistics, and computational mathematics. Knowledge of Scala and Java is advisable. What You Will Learn Get solid theoretical understandings of ML algorithms Configure Spark on cluster and cloud infrastructure to develop applications using Scala, Java, Python, and R Scale up ML applications on large cluster or cloud infrastructures Use Spark ML and MLlib to develop ML pipelines with recommendation system, classification, regression, clustering, sentiment analysis, and dimensionality reduction Handle large texts for developing ML applications with strong focus on feature engineering Use Spark Streaming to develop ML applications for real-time streaming Tune ML models with cross-validation, hyperparameters tuning and train split Enhance ML models to make them adaptable for new data in dynamic and incremental environments In Detail Data processing, implementing related algorithms, tuning, scaling up and finally deploying are some crucial steps in the process of optimising any application. Spark is capable of handling large-scale batch and streaming data to figure out when to cache data in memory and processing them up to 100 times faster than Hadoop-based MapReduce. This means predictive analytics can be applied to streaming and batch to develop complete machine learning (ML) applications a lot quicker, making Spark an ideal candidate for large data-intensive applications. This book focuses on design engineering and scalable solutions using ML with Spark. First, you will learn how to install Spark with all new features from the latest Spark 2.0 release. Moving on, you'll explore important concepts such as advanced feature engineering with RDD and Datasets. After studying developing and deploying applications, you will see how to use external libraries with Spark. In summary, you will be able to develop complete and personalised ML applications from data collections,model building, tuning, and scaling up to deploying on a cluster or the cloud. Style and approach This book takes a practical approach where all the topics explained are demonstrated with the help of real-world use cases.

Machine Learning Models and Algorithms for Big Data Classification

Thinking with Examples for Effective Learning

Author: Shan Suthaharan

Publisher: Springer

ISBN: 1489976418

Category: Business & Economics

Page: 359

View: 2655

This book presents machine learning models and algorithms to address big data classification problems. Existing machine learning techniques like the decision tree (a hierarchical approach), random forest (an ensemble hierarchical approach), and deep learning (a layered approach) are highly suitable for the system that can handle such problems. This book helps readers, especially students and newcomers to the field of big data and machine learning, to gain a quick understanding of the techniques and technologies; therefore, the theory, examples, and programs (Matlab and R) presented in this book have been simplified, hardcoded, repeated, or spaced for improvements. They provide vehicles to test and understand the complicated concepts of various topics in the field. It is expected that the readers adopt these programs to experiment with the examples, and then modify or write their own programs toward advancing their knowledge for solving more complex and challenging problems. The presentation format of this book focuses on simplicity, readability, and dependability so that both undergraduate and graduate students as well as new researchers, developers, and practitioners in this field can easily trust and grasp the concepts, and learn them effectively. It has been written to reduce the mathematical complexity and help the vast majority of readers to understand the topics and get interested in the field. This book consists of four parts, with the total of 14 chapters. The first part mainly focuses on the topics that are needed to help analyze and understand data and big data. The second part covers the topics that can explain the systems required for processing big data. The third part presents the topics required to understand and select machine learning techniques to classify big data. Finally, the fourth part concentrates on the topics that explain the scaling-up machine learning, an important solution for modern big data problems.

Die 4-Stunden-Woche

Mehr Zeit, mehr Geld, mehr Leben

Author: Timothy Ferriss

Publisher: Ullstein eBooks

ISBN: 3843704457

Category: Business & Economics

Page: 352

View: 2396

Warum arbeiten wir uns eigentlich zu Tode? Haben wir nichts Besseres zu tun? Und ob! - sagt Timothy Ferriss. Der junge Unternehmer war lange Workaholic mit 80-Stunden-Woche. Doch dann erfand er MBA - Management by Absence - und ist seitdem freier, reicher, glücklicher. Mit viel Humor, provokanten Denkanstößen und erprobten Tipps erklärt Ferriss, wie sich die 4-Stunden-Woche bei vollem Lohnausgleich verwirklichen lässt. Der Wegweiser für eine Flucht aus dem Hamsterrad und ein Manifest für eine neue Gewichtung zwischen Leben und Arbeiten.

Das Geheimnis des menschlichen Denkens

Einblicke in das Reverse Engineering des Gehirns

Author: Ray Kurzweil

Publisher: Lola Books

ISBN: 394420316X

Category: Science

Page: 352

View: 7063

Der Wettlauf um das Gehirn hat begonnen. Sowohl die EU als auch die USA haben gewaltige Forschungsprojekte ins Leben gerufen um das Geheimnis des menschlichen Denkens zu entschlüsseln. 2023 soll es dann soweit sein: Das menschliche Gehirn kann vollständig simuliert werden. In "Das Geheimnis des menschlichen Denkens" gewährt Googles Chefingenieur Ray Kurzweil einen spannenden Einblick in das Reverse Engineering des Gehirns. Er legt dar, wie mithilfe der Mustererkennungstheorie des Geistes der ungeheuren Komplexität des Gehirns beizukommen ist und wirft einen ebenso präzisen wie überraschenden Blick auf die am Horizont sich bereits abzeichnende Zukunft. Ist das menschliche Gehirn erst einmal simuliert, wird künstliche Intelligenz die Fähigkeiten des Menschen schon bald übertreffen. Ein Ereignis, das Kurzweil aufgrund der bereits in "Menschheit 2.0" entworfenen exponentiellen Wachstumskurve der Informationstechnologien bereits für das Jahr 2029 prognostiziert. Aber was dann? Kurzweil ist zuversichtlich, dass die Vorteile künstlicher Intelligenz mögliche Bedrohungsszenarien überwiegen und sie uns entscheidend dabei hilft, uns weiterzuentwickeln und die Herausforderungen der Zukunft zu meistern.

Neuronale Netze selbst programmieren

Ein verständlicher Einstieg mit Python

Author: Tariq Rashid

Publisher: O'Reilly

ISBN: 3960101031

Category: Computers

Page: 232

View: 4158

Neuronale Netze sind Schlüsselelemente des Deep Learning und der Künstlichen Intelligenz, die heute zu Erstaunlichem in der Lage sind. Sie sind Grundlage vieler Anwendungen im Alltag wie beispielsweise Spracherkennung, Gesichtserkennung auf Fotos oder die Umwandlung von Sprache in Text. Dennoch verstehen nur wenige, wie neuronale Netze tatsächlich funktionieren. Dieses Buch nimmt Sie mit auf eine unterhaltsame Reise, die mit ganz einfachen Ideen beginnt und Ihnen Schritt für Schritt zeigt, wie neuronale Netze arbeiten: - Zunächst lernen Sie die mathematischen Konzepte kennen, die den neuronalen Netzen zugrunde liegen. Dafür brauchen Sie keine tieferen Mathematikkenntnisse, denn alle mathematischen Ideen werden behutsam und mit vielen Illustrationen und Beispielen erläutert. Eine Kurzeinführung in die Analysis unterstützt Sie dabei. - Dann geht es in die Praxis: Nach einer Einführung in die populäre und leicht zu lernende Programmiersprache Python bauen Sie allmählich Ihr eigenes neuronales Netz mit Python auf. Sie bringen ihm bei, handgeschriebene Zahlen zu erkennen, bis es eine Performance wie ein professionell entwickeltes Netz erreicht. - Im nächsten Schritt tunen Sie die Leistung Ihres neuronalen Netzes so weit, dass es eine Zahlenerkennung von 98 % erreicht – nur mit einfachen Ideen und simplem Code. Sie testen das Netz mit Ihrer eigenen Handschrift und werfen noch einen Blick in das mysteriöse Innere eines neuronalen Netzes. - Zum Schluss lassen Sie das neuronale Netz auf einem Raspberry Pi Zero laufen. Tariq Rashid erklärt diese schwierige Materie außergewöhnlich klar und verständlich, dadurch werden neuronale Netze für jeden Interessierten zugänglich und praktisch nachvollziehbar.

Computational Learning Theory and Natural Learning Systems: Making learning systems practical

Author: Russell Greiner,Stephen José Hanson,Thomas Petsche

Publisher: MIT Press

ISBN: 9780262571180

Category: Computers

Page: 407

View: 5293

This is the fourth and final volume of papers from a series of workshops called "Computational Learning Theory and `Natural' Learning Systems." The purpose of the workshops was to explore the emerging intersection of theoretical learning research and natural learning systems. The workshops drew researchers from three historically distinct styles of learning research: computational learning theory, neural networks, and machine learning (a subfield of AI). Volume I of the series introduces the general focus of the workshops. Volume II looks at specific areas of interaction between theory and experiment. Volumes III and IV focus on key areas of learning systems that have developed recently. Volume III looks at the problem of "Selecting Good Models." The present volume, Volume IV, looks at ways of "Making Learning Systems Practical." The editors divide the twenty-one contributions into four sections. The first three cover critical problem areas: 1) scaling up from small problems to realistic ones with large input dimensions, 2) increasing efficiency and robustness of learning methods, and 3) developing strategies to obtain good generalization from limited or small data samples. The fourth section discusses examples of real-world learning systems. Contributors: Klaus Abraham-Fuchs, Yasuhiro Akiba, Hussein Almuallim, Arunava Banerjee, Sanjay Bhansali, Alvis Brazma, Gustavo Deco, David Garvin, Zoubin Ghahramani, Mostefa Golea, Russell Greiner, Mehdi T. Harandi, John G. Harris, Haym Hirsh, Michael I. Jordan, Shigeo Kaneda, Marjorie Klenin, Pat Langley, Yong Liu, Patrick M. Murphy, Ralph Neuneier, E. M. Oblow, Dragan Obradovic, Michael J. Pazzani, Barak A. Pearlmutter, Nageswara S. V. Rao, Peter Rayner, Stephanie Sage, Martin F. Schlang, Bernd Schurmann, Dale Schuurmans, Leon Shklar, V. Sundareswaran, Geoffrey Towell, Johann Uebler, Lucia M. Vaina, Takefumi Yamazaki, Anthony M. Zador

Data Algorithms

Recipes for Scaling Up with Hadoop and Spark

Author: Mahmoud Parsian

Publisher: "O'Reilly Media, Inc."

ISBN: 1491906154

Category: Computers

Page: 778

View: 9638

If you are ready to dive into the MapReduce framework for processing large datasets, this practical book takes you step by step through the algorithms and tools you need to build distributed MapReduce applications with Apache Hadoop or Apache Spark. Each chapter provides a recipe for solving a massive computational problem, such as building a recommendation system. You’ll learn how to implement the appropriate MapReduce solution with code that you can use in your projects. Dr. Mahmoud Parsian covers basic design patterns, optimization techniques, and data mining and machine learning solutions for problems in bioinformatics, genomics, statistics, and social network analysis. This book also includes an overview of MapReduce, Hadoop, and Spark. Topics include: Market basket analysis for a large set of transactions Data mining algorithms (K-means, KNN, and Naive Bayes) Using huge genomic data to sequence DNA and RNA Naive Bayes theorem and Markov chains for data and market prediction Recommendation algorithms and pairwise document similarity Linear regression, Cox regression, and Pearson correlation Allelic frequency and mining DNA Social network analysis (recommendation systems, counting triangles, sentiment analysis)

Die Zukunft der Intelligenz

wie das Gehirn funktioniert, und was Computer davon lernen können

Author: Jeff Hawkins

Publisher: N.A

ISBN: 9783499621673

Category:

Page: 315

View: 4693

Adaptive Agents and Multi-Agent Systems III. Adaptation and Multi-Agent Learning

Adaptation and Multi-Agent Learning, 5th, 6th, and 7th European Symposium, ALAMAS 2005-2007 on Adaptive and Learning Agents and Multi-Agent Systems, Revised Selected Papers

Author: Karl Tuyls,Ann Nowe,Zahia Guessoum,Daniel Kudenko

Publisher: Springer Science & Business Media

ISBN: 3540779477

Category: Computers

Page: 258

View: 9665

This book contains selected and revised papers of the European Symposium on Adaptive and Learning Agents and Multi-Agent Systems (ALAMAS), editions 2005, 2006 and 2007, held in Paris, Brussels and Maastricht. The goal of the ALAMAS symposia, and this associated book, is to increase awareness and interest in adaptation and learning for single agents and mul- agent systems, and encourage collaboration between machine learning experts, softwareengineeringexperts,mathematicians,biologistsandphysicists,andgive a representative overviewof current state of a?airs in this area. It is an inclusive forum where researchers can present recent work and discuss their newest ideas for a ?rst time with their peers. Thesymposiaseriesfocusesonallaspectsofadaptiveandlearningagentsand multi-agent systems, with a particular emphasis on how to modify established learning techniques and/or create new learning paradigms to address the many challenges presented by complex real-world problems. These symposia were a great success and provided a forum for the pres- tation of new ideas and results bearing on the conception of adaptation and learning for single agents and multi-agent systems. Over these three editions we received 51 submissions, of which 17 were carefully selected, including one invited paper of this year’s invited speaker Simon Parsons. This is a very c- petitive acceptance rate of approximately 31%, which, together with two review cycles, has led to a high-quality LNAI volume. We hope that our readers will be inspired by the papers included in this volume.

Towards Intelligent Engineering and Information Technology

Author: Imre J. Rudas,János Fodor,Janusz Kacprzyk

Publisher: Springer Science & Business Media

ISBN: 3642037364

Category: Computers

Page: 736

View: 5015

This book presents the state of the art of computational intelligence ion engineering. It offers challenging problems for efficient modeling of intelligent systems and details different methodologies of computational intelligence with real life applications.

Machine Learning Methods for Planning

Author: Steven Minton

Publisher: Morgan Kaufmann Publishers

ISBN: 9781558602489

Category: Business & Economics

Page: 540

View: 894

Captain Call, now a bounty hunter hired to catch bandit Joey Garza, assembles a group of unlikely assistants and travels to Crowtown Texas.

Menschheit 2.0

Die Singularität naht

Author: Ray Kurzweil

Publisher: Lola Books

ISBN: 3944203135

Category: Technology & Engineering

Page: 672

View: 1290

Das Jahr 2045 markiert einen historischen Meilenstein: Es ist das Jahr, in dem der Mensch seine biologischen Begrenzungen mithilfe der Technik überwinden wird. Diese als technologische Singularität bekannt gewordene Revolution wird die Menschheit für immer verändern. Googles Chefingenieur Ray Kurzweil, dessen wahnwitzigen Visionen in den vergangenen Jahrzehnten immer wieder genau ins Schwarze trafen, zeichnet in diesem Klassiker des Transhumanismus mit beispielloser Detailwut eine bunt schillernde Momentaufnahme der technischen Evolution und legt dar, weshalb diese so bald kein Ende finden, sondern im Gegenteil immer weiter an Dynamik gewinnen wird. Daraus ergibt sich eine ebenso faszinierende wie schockierende Vision für die Zukunft der Menschheit.

Eugén Onégin

Roman in Versen

Author: Aleksandr Sergeevich Pushkin

Publisher: N.A

ISBN: N.A

Category:

Page: 82

View: 3840

Data mining

praktische Werkzeuge und Techniken für das maschinelle Lernen

Author: Ian H. Witten,Eibe Frank

Publisher: N.A

ISBN: 9783446215337

Category:

Page: 386

View: 1206