Short Calculus

The Original Edition of “A First Course in Calculus”

Author: Serge Lang

Publisher: Springer Science & Business Media

ISBN: 1461300770

Category: Mathematics

Page: 260

View: 3673

From the reviews "This is a reprint of the original edition of Lang’s ‘A First Course in Calculus’, which was first published in 1964....The treatment is ‘as rigorous as any mathematician would wish it’....[The exercises] are refreshingly simply stated, without any extraneous verbiage, and at times quite challenging....There are answers to all the exercises set and some supplementary problems on each topic to tax even the most able." --Mathematical Gazette

A First Course in Calculus

Author: Serge Lang

Publisher: Springer Science & Business Media

ISBN: 1441985328

Category: Mathematics

Page: 731

View: 330

This fifth edition of Lang's book covers all the topics traditionally taught in the first-year calculus sequence. Divided into five parts, each section of A FIRST COURSE IN CALCULUS contains examples and applications relating to the topic covered. In addition, the rear of the book contains detailed solutions to a large number of the exercises, allowing them to be used as worked-out examples -- one of the main improvements over previous editions.

A First Course in the Mathematical Foundations of Thermodynamics

Author: D.R. Owen

Publisher: Springer Science & Business Media

ISBN: 1461395054

Category: Science

Page: 134

View: 4021

Research in the past thirty years on the foundations of thermodynamics has led not only to a better understanding of the early developments of the subject but also to formulations of the First and Second Laws that permit both a rigorous analysis of the consequences of these laws and a substantial broadening of the class of systems to which the laws can fruitfully be applied. Moreover, modem formulations of the laws of thermodynamics have now achieved logically parallel forms at a level accessible to under graduate students in science and engineering who have completed the standard calculus sequence and who wish to understand the role which mathematics can play in scientific inquiry. My goal in writing this book is to make some of the modem develop ments in thermodyamics available to readers with the background and orientation just mentioned and to present this material in the form of a text suitable for a one-semester junior-level course. Most of this presentation is taken from notes that I assembled while teaching such a course on two occasions. I found that, aside from a brief review of line integrals and exact differentials in two dimensions and a short discussion of infima and suprema of sets of real numbers, juniors (and even some mature sophomores) had sufficient mathematical background to handle the subject matter. Many of the students whom I taught had very limited experience with formal and rigorous mathematical exposition.

Analysis by Its History

Author: Ernst Hairer,Gerhard Wanner

Publisher: Springer Science & Business Media

ISBN: 0387770364

Category: Mathematics

Page: 379

View: 4904

This book presents first-year calculus roughly in the order in which it was first discovered. The first two chapters show how the ancient calculations of practical problems led to infinite series, differential and integral calculus and to differential equations. The establishment of mathematical rigour for these subjects in the 19th century for one and several variables is treated in chapters III and IV. Many quotations are included to give the flavor of the history. The text is complemented by a large number of examples, calculations and mathematical pictures and will provide stimulating and enjoyable reading for students, teachers, as well as researchers.

Elementary Analysis

The Theory of Calculus

Author: Kenneth A. Ross

Publisher: Springer Science & Business Media

ISBN: 1461462711

Category: Mathematics

Page: 412

View: 3325

For over three decades, this best-selling classic has been used by thousands of students in the United States and abroad as a must-have textbook for a transitional course from calculus to analysis. It has proven to be very useful for mathematics majors who have no previous experience with rigorous proofs. Its friendly style unlocks the mystery of writing proofs, while carefully examining the theoretical basis for calculus. Proofs are given in full, and the large number of well-chosen examples and exercises range from routine to challenging. The second edition preserves the book’s clear and concise style, illuminating discussions, and simple, well-motivated proofs. New topics include material on the irrationality of pi, the Baire category theorem, Newton's method and the secant method, and continuous nowhere-differentiable functions.

Discrete Mathematics

Elementary and Beyond

Author: L. Lovász,J. Pelikán,K. Vesztergombi

Publisher: Springer Science & Business Media

ISBN: 9780387955858

Category: Mathematics

Page: 284

View: 1154

Aimed at undergraduate mathematics and computer science students, this book is an excellent introduction to a lot of problems of discrete mathematics. It discusses a number of selected results and methods, mostly from areas of combinatorics and graph theory, and it uses proofs and problem solving to help students understand the solutions to problems. Numerous examples, figures, and exercises are spread throughout the book.

Advanced Calculus

Revised

Author: Lynn Harold Loomis,Shlomo Sternberg

Publisher: World Scientific Publishing Company

ISBN: 9814583952

Category: Mathematics

Page: 596

View: 4243

An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades. This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis. The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives. In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.

Undergraduate Algebra

Author: Serge Lang

Publisher: Springer Science & Business Media

ISBN: 9780387972794

Category: Mathematics

Page: 371

View: 6674

The companion title, Linear Algebra, has sold over 8,000 copies The writing style is very accessible The material can be covered easily in a one-year or one-term course Includes Noah Snyder's proof of the Mason-Stothers polynomial abc theorem New material included on product structure for matrices including descriptions of the conjugation representation of the diagonal group

Mathematical Vistas

From a Room with Many Windows

Author: Peter Hilton,Derek Holton,Jean Pedersen

Publisher: Springer Science & Business Media

ISBN: 1475736819

Category: Mathematics

Page: 337

View: 2233

This book collects nine related mathematical essays which will intrigue and inform. From the reviews: "The authors put their writing where their talents are, and students get to see just how alive mathematics is...there is much to commend the book. It contains plenty of interesting mathematics, often going in unusual directions. I like the diagrams; the authors have chosen mathematics that involves especially pretty ones." --THE MATHEMATICAL ASSOCIATION OF AMERICA

Topology of Surfaces

Author: L.Christine Kinsey

Publisher: Springer Science & Business Media

ISBN: 1461208998

Category: Mathematics

Page: 281

View: 3768

" . . . that famous pedagogical method whereby one begins with the general and proceeds to the particular only after the student is too confused to understand even that anymore. " Michael Spivak This text was written as an antidote to topology courses such as Spivak It is meant to provide the student with an experience in geomet describes. ric topology. Traditionally, the only topology an undergraduate might see is point-set topology at a fairly abstract level. The next course the average stu dent would take would be a graduate course in algebraic topology, and such courses are commonly very homological in nature, providing quick access to current research, but not developing any intuition or geometric sense. I have tried in this text to provide the undergraduate with a pragmatic introduction to the field, including a sampling from point-set, geometric, and algebraic topology, and trying not to include anything that the student cannot immediately experience. The exercises are to be considered as an in tegral part of the text and, ideally, should be addressed when they are met, rather than at the end of a block of material. Many of them are quite easy and are intended to give the student practice working with the definitions and digesting the current topic before proceeding. The appendix provides a brief survey of the group theory needed.

The Art of Proof

Basic Training for Deeper Mathematics

Author: Matthias Beck,Ross Geoghegan

Publisher: Springer Science & Business Media

ISBN: 9781441970237

Category: Mathematics

Page: 182

View: 8382

The Art of Proof is designed for a one-semester or two-quarter course. A typical student will have studied calculus (perhaps also linear algebra) with reasonable success. With an artful mixture of chatty style and interesting examples, the student's previous intuitive knowledge is placed on solid intellectual ground. The topics covered include: integers, induction, algorithms, real numbers, rational numbers, modular arithmetic, limits, and uncountable sets. Methods, such as axiom, theorem and proof, are taught while discussing the mathematics rather than in abstract isolation. The book ends with short essays on further topics suitable for seminar-style presentation by small teams of students, either in class or in a mathematics club setting. These include: continuity, cryptography, groups, complex numbers, ordinal number, and generating functions.

Calculus

A Short Course

Author: Michael C. Gemignani

Publisher: Courier Corporation

ISBN: 0486438236

Category: Mathematics

Page: 269

View: 2499

Clearly written and well-illustrated, this text is geared toward undergraduate business and social science students. Topics include sets, functions, and graphs; limits and continuity; special functions; the derivative; the definite integral; and functions of several variables. Answers to more than half of the problems appear in the appendix. 1972 edition. Includes 142 figures.

A First Course in Analysis

Author: John B. Conway

Publisher: Cambridge University Press

ISBN: 1107173140

Category: Mathematics

Page: 375

View: 6888

This rigorous textbook is intended for a year-long analysis or advanced calculus course for advanced undergraduate or beginning graduate students. Starting with detailed, slow-paced proofs that allow students to acquire facility in reading and writing proofs, it clearly and concisely explains the basics of differentiation and integration of functions of one and several variables, and covers the theorems of Green, Gauss, and Stokes. Minimal prerequisites are assumed, and relevant linear algebra topics are reviewed right before they are needed, making the material accessible to students from diverse backgrounds. Abstract topics are preceded by concrete examples to facilitate understanding, for example, before introducing differential forms, the text examines low-dimensional examples. The meaning and importance of results are thoroughly discussed, and numerous exercises of varying difficulty give students ample opportunity to test and improve their knowledge of this difficult yet vital subject.

A Short Course on Spectral Theory

Author: William Arveson

Publisher: Springer Science & Business Media

ISBN: 0387215182

Category: Mathematics

Page: 142

View: 4838

This book presents the basic tools of modern analysis within the context of the fundamental problem of operator theory: to calculate spectra of specific operators on infinite dimensional spaces, especially operators on Hilbert spaces. The tools are diverse, and they provide the basis for more refined methods that allow one to approach problems that go well beyond the computation of spectra: the mathematical foundations of quantum physics, noncommutative K-theory, and the classification of simple C*-algebras being three areas of current research activity which require mastery of the material presented here.

Introduction to Mathematical Structures and Proofs

Author: Larry J. Gerstein

Publisher: Springer Science & Business Media

ISBN: 1461442656

Category: Mathematics

Page: 401

View: 2055

As a student moves from basic calculus courses into upper-division courses in linear and abstract algebra, real and complex analysis, number theory, topology, and so on, a "bridge" course can help ensure a smooth transition. Introduction to Mathematical Structures and Proofs is a textbook intended for such a course, or for self-study. This book introduces an array of fundamental mathematical structures. It also explores the delicate balance of intuition and rigor—and the flexible thinking—required to prove a nontrivial result. In short, this book seeks to enhance the mathematical maturity of the reader. The new material in this second edition includes a section on graph theory, several new sections on number theory (including primitive roots, with an application to card-shuffling), and a brief introduction to the complex numbers (including a section on the arithmetic of the Gaussian integers). Solutions for even numbered exercises are available on springer.com for instructors adopting the text for a course.

Calculus of One Variable

Author: K.E. Hirst

Publisher: Springer Science & Business Media

ISBN: 1846282225

Category: Mathematics

Page: 268

View: 6013

Adopts a user-friendly approach, with an emphasis on worked examples and exercises, rather than abstract theory The computer algebra and graphical package MAPLE is used to illustrate many of the ideas and provides an additional aid to teaching and learning Supplementary material, including detailed solutions to exercises and MAPLE worksheets, is available via the web

Intermediate Calculus

Author: Murray H. Protter,Charles B. Jr. Morrey

Publisher: Springer Science & Business Media

ISBN: 1461210860

Category: Mathematics

Page: 655

View: 1127

A First Course in Probability

Author: Sheldon Ross

Publisher: Pearson

ISBN: 0321926676

Category: Mathematics

Page: N.A

View: 938

This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. A First Course in Probability, Ninth Edition, features clear and intuitive explanations of the mathematics of probability theory, outstanding problem sets, and a variety of diverse examples and applications. This book is ideal for an upper-level undergraduate or graduate level introduction to probability for math, science, engineering and business students. It assumes a background in elementary calculus.

Calculus and Analysis in Euclidean Space

Author: Jerry Shurman

Publisher: Springer

ISBN: 3319493140

Category: Mathematics

Page: 507

View: 2086

The graceful role of analysis in underpinning calculus is often lost to their separation in the curriculum. This book entwines the two subjects, providing a conceptual approach to multivariable calculus closely supported by the structure and reasoning of analysis. The setting is Euclidean space, with the material on differentiation culminating in the inverse and implicit function theorems, and the material on integration culminating in the general fundamental theorem of integral calculus. More in-depth than most calculus books but less technical than a typical analysis introduction, Calculus and Analysis in Euclidean Space offers a rich blend of content to students outside the traditional mathematics major, while also providing transitional preparation for those who will continue on in the subject. The writing in this book aims to convey the intent of ideas early in discussion. The narrative proceeds through figures, formulas, and text, guiding the reader to do mathematics resourcefully by marshaling the skills of geometric intuition (the visual cortex being quickly instinctive) algebraic manipulation (symbol-patterns being precise and robust) incisive use of natural language (slogans that encapsulate central ideas enabling a large-scale grasp of the subject). Thinking in these ways renders mathematics coherent, inevitable, and fluid. The prerequisite is single-variable calculus, including familiarity with the foundational theorems and some experience with proofs.