Statistical methods for rates and proportions

Author: Joseph L. Fleiss

Publisher: John Wiley & Sons


Category: Mathematics

Page: 223

View: 4014

Includes a new chapter on logistic regression. Discusses the design and analysis of random trials. Explores the latest applications of sample size tables. Contains a new section on binomial distribution.

Statistical Methods for Rates and Proportions

Author: Joseph L. Fleiss,Bruce Levin,Myunghee Cho Paik

Publisher: John Wiley & Sons

ISBN: 1118625617

Category: Mathematics

Page: 800

View: 5375

"This book is to be recommended as a standard shelf reference . . . and as a ‘must’ to be read by all who wish to better use and understand data involving dichotomous or dichotomizable measurements." —American Journal of Psychiatry In the two decades since the second edition of Statistical Methods for Rates and Proportions was published, evolving technologies and new methodologies have significantly changed the way today’s statistics are viewed and handled. The explosive development of personal computing and statistical software has facilitated the sophisticated analysis of data, putting capabilities that were once the domain of specialists into the hands of every researcher. The Third Edition of this important text addresses these changes and brings the literature up to date. While the previous edition focused on the use of desktop and handheld calculators, the new edition takes full advantage of modern computing power without losing the elegant simplicity that made the text so popular with students and practitioners alike. In authoritative yet clear terminology, the authors have brought the science of data analysis up to date without compromising its accessibility. Features of the Third Edition include: New material on sample size calculations and issues in clinical trials, and entirely new chapters on single-sample data, logistic regression, Poisson regression, regression models for matched samples, the analysis of correlated binary data, and methods for analyzing fourfold tables with missing data The addition of many new problems, both numerical and theoretical Answer sections for numerical problems and hints for tackling the theoretical ones A frequentist approach enhanced by the inclusion of empirical Bayesian methodology where appropriate Combining the latest research with the original studies that established the previous editions as leaders in the field, Statistical Methods for Rates and Proportions, Third Edition will continue to be an invaluable resource for students, statisticians, biostatisticians, and epidemiologists.

Statistical Methods for Hospital Monitoring with R

Author: Anthony Morton,Kerrie L. Mengersen,Geoffrey Playford,Michael Whitby

Publisher: John Wiley & Sons

ISBN: 1118639170

Category: Medical

Page: 432

View: 4616

Hospitals monitoring is becoming more complex and is increasing both because staff want their data analysed and because of increasing mandated surveillance. This book provides a suite of functions in R, enabling scientists and data analysts working in infection management and quality improvement departments in hospitals, to analyse their often non-independent data which is frequently in the form of trended, over-dispersed and sometimes auto-correlated time series; this is often difficult to analyse using standard office software. This book provides much-needed guidance on data analysis using R for the growing number of scientists in hospital departments who are responsible for producing reports, and who may have limited statistical expertise. This book explores data analysis using R and is aimed at scientists in hospital departments who are responsible for producing reports, and who are involved in improving safety. Professionals working in the healthcare quality and safety community will also find this book of interest Statistical Methods for Hospital Monitoring with R: Provides functions to perform quality improvement and infection management data analysis. Explores the characteristics of complex systems, such as self-organisation and emergent behaviour, along with their implications for such activities as root-cause analysis and the Pareto principle that seek few key causes of adverse events. Provides a summary of key non-statistical aspects of hospital safety and easy to use functions. Provides R scripts in an accompanying web site enabling analyses to be performed by the reader Covers issues that will be of increasing importance in the future, such as, generalised additive models, and complex systems, networks and power laws.

Statistical Research Methods

A Guide for Non-Statisticians

Author: Roy Sabo,Edward Boone

Publisher: Springer Science & Business Media

ISBN: 1461487080

Category: Medical

Page: 214

View: 2582

This textbook will help graduate students in non-statistics disciplines, advanced undergraduate researchers, and research faculty in the health sciences to learn, use and communicate results from many commonly used statistical methods. The material covered, and the manner in which it is presented, describe the entire data analysis process from hypothesis generation to writing the results in a manuscript. Chapters cover, among other topics: one and two-sample proportions, multi-category data, one and two-sample means, analysis of variance, and regression. Throughout the text, the authors explain statistical procedures and concepts using a non-statistical language. This accessible approach is complete with real-world examples and sample write-ups for the Methods and Results sections of scholarly papers. The text also allows for the concurrent use of the programming language R, which is an open-source program created, maintained and updated by the statistical community. R is freely available and easy to download.


A Biomedical Introduction

Author: Byron W. Brown,Byron Wm. Brown, Jr.,Myles Hollander

Publisher: John Wiley & Sons

ISBN: 9780471112402

Category: Mathematics

Page: 456

View: 3214

Elementary rules of probability; Populations, samples, and the distribution of the sample mean; Analysis of matched pairs using sample means; Analysis of the two-sample location problem using sample means; Surveys and experiments in medical research; Statistical inference for dichotomous variables; Comparing two success probabilities; Chi-squared tests; Analysis of k-sample problems; Linear regression and correlation; Analysis of matched pairs using ranks; Analysis of the two-sample location problem using ranks; Methods for censored data.

Foundations of Applied Statistical Methods

Author: Hang Lee

Publisher: Springer Science & Business Media

ISBN: 3319024027

Category: Medical

Page: 161

View: 1382

This is a text in methods of applied statistics for researchers who design and conduct experiments, perform statistical inference, and write technical reports. These research activities rely on an adequate knowledge of applied statistics. The reader both builds on basic statistics skills and learns to apply it to applicable scenarios without over-emphasis on the technical aspects. Demonstrations are a very important part of this text. Mathematical expressions are exhibited only if they are defined or intuitively comprehensible. This text may be used as a self review guidebook for applied researchers or as an introductory statistical methods textbook for students not majoring in statistics.​ Discussion includes essential probability models, inference of means, proportions, correlations and regressions, methods for censored survival time data analysis, and sample size determination. The author has over twenty years of experience on applying statistical methods to study design and data analysis in collaborative medical research setting as well as on teaching. He received his PhD from University of Southern California Department of Preventive Medicine, received a post-doctoral training at Harvard Department of Biostatistics, has held faculty appointments at UCLA School of Medicine and Harvard Medical School, and currently a biostatistics faculty member at Massachusetts General Hospital and Harvard Medical School in Boston, Massachusetts, USA.

Statistical Analysis of Epidemiologic Data

Author: S. Selvin

Publisher: Oxford University Press, USA


Category: Epidemiology

Page: 467

View: 946

This book combines applied and theoretical approaches to the analysis of epidemiologic issues. It goes beyond elementary material to deal with real problems generated by disease data, and delves into less usual areas such as the analysis of spatial distributions, survival data, proportional hazards regression, and "computer-intensive" approaches to statistical estimation. Each method discussed in the text is illustrated with examples which include complete sets of data. Using actual data demonstrates the strengths and weaknesses of different analytic approaches in describing a disease process. The goal of the book is to allow the reader to develop a clear understanding of analytic approaches to problems in epidemiologic data analysis without relying on sophisticated mathematics and advanced statistical theory. For the Second Edition a new chapter on the analysis of matched data has been added. This covers both discrete and continuous outcomes and explains both the classic analytic approach and the conditional logistic regression model. New sections have also been added on contingency table data, misclassification, and additive models underlying tabular data. In all the chapters there are new applications and other revisions that make this Second Edition a clearer and more helpful exposition of the way statistical tools are used to analyze epidemiologic data.

Confidence Intervals for Proportions and Related Measures of Effect Size

Author: Robert G. Newcombe

Publisher: CRC Press

ISBN: 1439812799

Category: Mathematics

Page: 468

View: 612

Confidence Intervals for Proportions and Related Measures of Effect Size illustrates the use of effect size measures and corresponding confidence intervals as more informative alternatives to the most basic and widely used significance tests. The book provides you with a deep understanding of what happens when these statistical methods are applied in situations far removed from the familiar Gaussian case. Drawing on his extensive work as a statistician and professor at Cardiff University School of Medicine, the author brings together methods for calculating confidence intervals for proportions and several other important measures, including differences, ratios, and nonparametric effect size measures generalizing Mann-Whitney and Wilcoxon tests. He also explains three important approaches to obtaining intervals for related measures. Many examples illustrate the application of the methods in the health and social sciences. Requiring little computational skills, the book offers user-friendly Excel spreadsheets for download at, enabling you to easily apply the methods to your own empirical data.

Statistical Models for Proportions and Probabilities

Author: George A.F. Seber

Publisher: Springer Science & Business Media

ISBN: 3642390412

Category: Mathematics

Page: 69

View: 7846

​Methods for making inferences from data about one or more probabilities and proportions are a fundamental part of a statistician’s toolbox and statistics courses. Unfortunately many of the quick, approximate methods currently taught have recently been found to be inappropriate. This monograph gives an up-to-date review of recent research on the topic and presents both exact methods and helpful approximations. Detailed theory is also presented for the different distributions involved, and can be used in a classroom setting. It will be useful for those teaching statistics at university level and for those involved in statistical consulting.

Applied Linear Statistical Models

Author: John Neter,William Wasserman

Publisher: N.A

ISBN: 9780071145671


Page: 1408

View: 9448

Focusing on applied statistical models, this text has an applied approach with an emphasis on understanding of concepts and exposition by means of examples. Theoretical foundations are provided so that applications of regression analysis can be carried out. There is expanded use of graphics, scatter plot metrics, and 3D rotating plots. Case studies feature throughout the text.

Statistical Techniques for Data Analysis, Second Edition

Author: John K. Taylor,Cheryl Cihon

Publisher: CRC Press

ISBN: 9780203492390

Category: Mathematics

Page: 296

View: 2193

Since the first edition of this book appeared, computers have come to the aid of modern experimenters and data analysts, bringing with them data analysis techniques that were once beyond the calculational reach of even professional statisticians. Today, scientists in every field have access to the techniques and technology they need to analyze statistical data. All they need is practical guidance on how to use them. Valuable to everyone who produces, uses, or evaluates scientific data, Statistical Techniques for Data Analysis, Second Edition provides straightforward discussion of basic statistical techniques and computer analysis. The purpose, structure, and general principles of the book remain the same as the first edition, but the treatment now includes updates in every chapter, additional topics, and most importantly, an introduction to use of the MINITAB Statistical Software. The presentation of each technique includes motivation and discussion of the statistical analysis, a hand-calculated example, the same example calculated using MINITAB, and discussion of the MINITAB output and conclusions. Highlights of the Second Edition: " Detailed discussion and use of MINITAB in examples complete with code and output " A new chapter addressing proportions, time to event data, and time series data in the metrology setting " Additional material on hypothesis testing " Discussion of critical values " A look at mistakes commonly made in data analysis

The Analysis of Means

A Graphical Method for Comparing Means, Rates, and Proportions

Author: Peter R. Nelson,Peter S. Wludyka,Karen A. F. Copeland

Publisher: SIAM

ISBN: 089871592X

Category: Mathematics

Page: 247

View: 4898

The analysis of means (ANOM) is a graphical procedure used to quantify differences among treatment groups in a variety of experimental design and observational study situations. The ANOM decision chart allows one to easily draw conclusions and interpret results with respect to both statistical and practical significance. It is an excellent choice for multiple comparisons of means, rates, or proportions and can be used with both balanced and unbalanced data. Key advances in ANOM procedures that have appeared only in technical journals during the last 20 years are included in this first comprehensive modern treatment of the ANOM containing all of the needed information for practitioners to understand and apply ANOM. The Analysis of Means: A Graphical Method for Comparing Means, Rates, and Proportions contains examples from a wide variety of fields adapted from real-world applications and data with easy-to-follow, step-by-step instructions. It is front loaded, so potential ANOM users can find solutions to standard problems in the first five chapters. An appendix contains several SAS® examples showing the system's ANOM capabilities and how SAS was used to produce selected ANOM decision charts in the book.Given these features, the lack of any other book on ANOM, and the recent inclusion of ANOM in SAS, this book will be a welcome addition to practitioners' and statisticians' bookshelves, where it will serve both as a primer and reference.Applied statisticians, particularly consulting statisticians, will find that the graphical aspect of ANOM makes it easy to convey results to nonstatisticians. Industrial, process, and quality engineers will find that the ANOM decisions charts offer an ideal interface with management and can be instrumental in selling research conclusions. The ANOM procedures are great for comparing the rates and proportions found in managed health care settings, and for comparing outcomes in multiarm studies done by statistical researchers in medicine.

An Introduction to Statistical Methods and Data Analysis

Author: R. Lyman Ott,Micheal T. Longnecker

Publisher: Cengage Learning

ISBN: 1305465520

Category: Mathematics

Page: 1296

View: 1673

Ott and Longnecker's AN INTRODUCTION TO STATISTICAL METHODS AND DATA ANALYSIS, Seventh Edition, provides a broad overview of statistical methods for advanced undergraduate and graduate students from a variety of disciplines who have little or no prior course work in statistics. The authors teach students to solve problems encountered in research projects, to make decisions based on data in general settings both within and beyond the university setting, and to become critical readers of statistical analyses in research papers and news reports. The first eleven chapters present material typically covered in an introductory statistics course, as well as case studies and examples that are often encountered in undergraduate capstone courses. The remaining chapters cover regression modeling and design of experiments. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Working With Numbers and Statistics

A Handbook for Journalists

Author: Charles Livingston,Paul S. Voakes

Publisher: Routledge

ISBN: 1135605939

Category: Language Arts & Disciplines

Page: 120

View: 1329

Working With Numbers and Statistics: A Handbook for Journalists will bolster math skills and improve math confidence for journalists at all skill levels. Authors Charles Livingston and Paul Voakes developed this resource book to improve journalistic writing and reporting, enabling journalists to: *make accurate, reliable computations, which in turn enables one to make relevant comparisons, put facts into perspective, and lend important context to stories; *recognize inaccurate presentations, whether willfully spun or just carelessly relayed; *ask appropriate questions about numerical matters; *translate complicated numbers for viewers and readers in ways they can readily understand; *understand computer-assisted reporting; and *write livelier, more precise pieces through the use of numbers. The math is presented in a journalistic context throughout, enabling readers to see how the procedures will come into play in their work. Working With Numbers and Statistics is designed as a reference work for journalism students developing their writing and reporting skills. It will also serve professionals as a useful tool to improve their understanding and use of numbers in news stories.

Statistics for Lawyers

Author: Michael O. Finkelstein,Bruce Levin

Publisher: Springer

ISBN: 1441959858

Category: Social Science

Page: 657

View: 602

This classic text, first published in 1990, is designed to introduce law students, law teachers, practitioners, and judges to the basic ideas of mathematical probability and statistics as they have been applied in the law. The third edition includes over twenty new sections, including the addition of timely topics, like New York City police stops, exonerations in death-sentence cases, projecting airline costs, and new material on various statistical techniques such as the randomized response survey technique, rare-events meta-analysis, competing risks, and negative binomial regression. The book consists of sections of exposition followed by real-world cases and case studies in which statistical data have played a role. The reader is asked to apply the theory to the facts, to calculate results (a hand calculator is sufficient), and to explore legal issues raised by quantitative findings. The authors' calculations and comments are given in the back of the book. As with previous editions, the cases and case studies reflect a broad variety of legal subjects, including antidiscrimination, mass torts, taxation, school finance, identification evidence, preventive detention, handwriting disputes, voting, environmental protection, antitrust, sampling for insurance audits, and the death penalty. A chapter on epidemiology was added in the second edition. In 1991, the first edition was selected by the University of Michigan Law Review as one of the important law books of the year.

Bayesian Methods for Hackers

Probabilistic Programming and Bayesian Methods

Author: Cameron Davidson-Pilon

Publisher: Addison-Wesley Professional

ISBN: 9780133902839

Category: Computers

Page: 320

View: 7692

Master Bayesian Inference through Practical Examples and Computation Not Advanced Mathematical Analysis Bayesian methods of inference are deeply natural and extremely powerful. However, most discussions of Bayesian inference rely on intensely complex mathematical analyses and artificial examples, making it inaccessible to anyone without a strong mathematical background. Now, though, Cameron Davidson-Pilon introduces Bayesian inference from a computational perspective, bridging theory to practice freeing you to get results using computing power. "Bayesian Methods for Hackers" illuminates Bayesian inference through probabilistic programming with the powerful PyMC language and the closely related Python tools NumPy, SciPy, and Matplotlib. Using this approach, you can reach effective solutions in small increments, without extensive mathematical intervention. Davidson-Pilon begins by introducing the concepts underlying Bayesian inference, comparing it with other techniques and guiding you through building and training your first Bayesian model. Next, he introduces PyMC through a series of detailed examples and intuitive explanations that have been refined after extensive user feedback. You ll learn how to use the Markov Chain Monte Carlo algorithm, choose appropriate sample sizes and priors, work with loss functions, and apply Bayesian inference in domains ranging from finance to marketing. Once you ve mastered these techniques, you ll constantly turn to this guide for the working PyMC code you need to jumpstart future projects. Coverage includes Learning the Bayesian state of mind and its practical implications Understanding how computers perform Bayesian inference Using the PyMC Python library to program Bayesian analyses Building and debugging models with PyMC Testing your model s goodness of fit Opening the black box of the Markov Chain Monte Carlo algorithm to see how and why it works Leveraging the power of the Law of Large Numbers Mastering key concepts, such as clustering, convergence, autocorrelation, and thinning Using loss functions to measure an estimate s weaknesses based on your goals and desired outcomes Selecting appropriate priors and understanding how their influence changes with dataset size Overcoming the exploration vs. exploitation dilemma: deciding when pretty good is good enough Using Bayesian inference to improve A/B testing Solving data science problems that rely on mountains of data"

Statistics in Medicine

Author: Robert H. Riffenburgh

Publisher: Academic Press

ISBN: 0123848652

Category: Science

Page: 738

View: 4637

Statistics in Medicine, Third Edition makes medical statistics easy to understand by students, practicing physicians, and researchers. The book begins with databases from clinical medicine and uses such data to give multiple worked-out illustrations of every method. The text opens with how to plan studies from conception to publication and what to do with your data, and follows with step-by-step instructions for biostatistical methods from the simplest levels (averages, bar charts) progressively to the more sophisticated methods now being seen in medical articles (multiple regression, noninferiority testing). Examples are given from almost every medical specialty and from dentistry, nursing, pharmacy, and health care management. A preliminary guide is given to tailor sections of the text to various lengths of biostatistical courses. User-friendly format includes medical examples, step-by-step methods, and check-yourself exercises appealing to readers with little or no statistical background, across medical and biomedical disciplines Facilitates stand-alone methods rather than a required sequence of reading and references to prior text Covers trial randomization, treatment ethics in medical research, imputation of missing data, evidence-based medical decisions, how to interpret medical articles, noninferiority testing, meta-analysis, screening number needed to treat, and epidemiology Fills the gap left in all other medical statistics books between the reader’s knowledge of how to go about research and the book’s coverage of how to analyze results of that research New in this Edition: New chapters on planning research, managing data and analysis, Bayesian statistics, measuring association and agreement, and questionnaires and surveys New sections on what tests and descriptive statistics to choose, false discovery rate, interim analysis, bootstrapping, Bland-Altman plots, Markov chain Monte Carlo (MCMC), and Deming regression Expanded coverage on probability, statistical methods and tests relatively new to medical research, ROC curves, experimental design, and survival analysis 35 Databases in Excel format used in the book and can be downloaded and transferred into whatever format is needed along with PowerPoint slides of figures, tables, and graphs from the book included on the companion site, Medical subject index offers additional search capabilities