Structure Analysis by Electron Diffraction

Author: B. K. Vainshtein

Publisher: Elsevier

ISBN: 1483164756

Category: Science

Page: 430

View: 9961

Structure Analysis by Electron Diffraction focuses on the theory and practice of studying the atomic structure of crystalline substances through electron diffraction. The publication first offers information on diffraction methods in structure analysis and the geometrical theory of electron diffraction patterns. Discussions focus on the fundamental concepts of the theory of scattering and structure analysis of crystals, structure analysis by electron diffraction, formation of spot electron diffraction patterns, electron diffraction texture patterns, and polycrystalline electron diffraction patterns. The text then ponders on intensities of reflections, including atomic scattering, temperature factor, structure amplitude, experimental measurements of intensity, and review of equations for intensities of reflections in electron diffraction patterns. The manuscript examines the Fourier methods in electron diffraction and experimental electron diffraction structure investigations. Topics include the determination of the structure of the hydrated chlorides of transition metals; structures of carbides and nitrides of certain metals and semi-conducting alloys; electron diffraction investigation of clay minerals; and possibilities inherent in structure analysis by electron diffraction. The book is a helpful source of data for readers interested in structure analysis by electron diffraction.

Electron-Diffraction Analysis of Clay Mineral Structures

Author: B. B. Zvyagin

Publisher: Springer Science & Business Media

ISBN: 1461586127

Category: Science

Page: 364

View: 5422

As a method of structure analysis, electron diffraction has its own spe cial possibilities and advantages in comparison to the X -ray method for the study of finely dispersed minerals with layer or pseudolayer structures. How ever, possibly because of the prior existence of the X-ray method, which found universal application in different fields and attracted the main efforts of spe cialists, electron diffraction has been unevenly disseminated and developed in different countries. In particular, the oblique texture method, which gives very complete and detailed structural information, has been mainly used in the Soviet Union, where electron-diffraction cameras specially suited to the method have been constructed. In other countries, studies have been made of micro-single crystals, because these studies could be carried out with existing electron microscopes. It should be recognized that the scale of distribution and use attained by electron-diffraction methods, at present limited by exist ing experimental conditions. is more than justified by the value of the results which may be obtained by their aid. The author hopes that the present book will give the reader a fuller idea of the valuable advantages of the method, and of the structural crystallography picture which has been built up for clay minerals, and layer silicates in general, from electron-diffraction data. The time between the appearance of this book and that of the Russian edition has been comparatively short.

Structural Electron Crystallography

Author: D.L. Dorset

Publisher: Springer Science & Business Media

ISBN: 1475766211

Category: Science

Page: 452

View: 6240

This authoritative text on electron diffraction and crystal structure analysis is the first to describe direct phasing techniques in electron crystallography. Written for electron diffractionists and electron microscopists, this fully illustrated volume presents methods for specimen preparation, data collection and structure analysis. Chapters feature numerous detailed examples of actual structure analyses and contain over 350 illustrations.

International Tables for Crystallography, Volume B

Reciprocal Space

Author: Uri Shmueli

Publisher: Springer Science & Business Media

ISBN: 9781402082054

Category: Science

Page: 696

View: 3216

International Tables for Crystallography are no longer available for purchase from Springer. For further information please contact Wiley Inc. (follow the link on the right hand side of this page). Volume B presents accounts of the numerous aspects of reciprocal space in crystallographic research. After an introductory chapter, Part 1 presents the reader with an account of structure-factor formalisms, an extensive treatment of the theory, algorithms and crystallographic applications of Fourier methods, and fundamental as well as advanced treatments of symmetry in reciprocal space. In Part 2, these general accounts are followed by detailed expositions of crystallographic statistics, the theory of direct methods, Patterson techniques, isomorphous replacement and anomalous scattering, and treatments of the role of electron microscopy and diffraction in crystal structure determination, including applications of direct methods to electron crystallography. Part 3 deals with applications of reciprocal space to molecular geometry and `best'-plane calculations, and contains a treatment of the principles of molecular graphics and modelling and their applications. A convergence-acceleration method of importance in the computation of approximate lattice sums is presented and the part concludes with a discussion of the Ewald method. Part 4 contains treatments of various diffuse-scattering phenomena arising from crystal dynamics, disorder and low dimensionality (liquid crystals), and an exposition of the underlying theories and/or experimental evidence. Polymer crystallography and reciprocal-space images of aperiodic crystals are also treated. Part 5 of the volume contains introductory treatments of the theory of the interaction of radiation with matter (dynamical theory) as applied to X-ray, electron and neutron diffraction techniques. The simplified trigonometric expressions for the structure factors in the 230 three-dimensional space groups, which appeared in Volume I of International Tables for X-ray Crystallography, are now given in Appendix 1.4.3 to Chapter 1.4 of this volume. Volume B is a vital addition to the library of scientists engaged in crystal structure determination, crystallographic computing, crystal physics and other fields of crystallographic research. Graduate students specializing in crystallography will find much material suitable for self-study and a rich source of references to the relevant literature.

Uniting Electron Crystallography and Powder Diffraction

Author: Ute Kolb,Kenneth Shankland,Louisa Meshi,Anatoly Avilov,William I.F David

Publisher: Springer

ISBN: 9400755805

Category: Science

Page: 434

View: 7289

The polycrystalline and nanocrystalline states play an increasingly important role in exploiting the properties of materials, encompassing applications as diverse as pharmaceuticals, catalysts, solar cells and energy storage. A knowledge of the three-dimensional atomic and molecular structure of materials is essential for understanding and controlling their properties, yet traditional single-crystal X-ray diffraction methods lose their power when only polycrystalline and nanocrystalline samples are available. It is here that powder diffraction and single-crystal electron diffraction techniques take over, substantially extending the range of applicability of the crystallographic principles of structure determination. This volume, a collection of teaching contributions presented at the Crystallographic Course in Erice in 2011, clearly describes the fundamentals and the state-of-the-art of powder diffraction and electron diffraction methods in materials characterisation, encompassing a diverse range of disciplines and materials stretching from archeometry to zeolites. As such, it is a comprehensive and valuable resource for those wishing to gain an understanding of the broad applicability of these two rapidly developing fields.

Electron Diffraction and High-Resolution Electron Microscopy of Mineral Structures

Author: Victor A. Drits

Publisher: Springer Science & Business Media

ISBN: 3642717292

Category: Science

Page: 304

View: 7939

The decision of Springer-Verlag to publish this book in English came as a pleasant surprise. The fact is that I started writing the first version of the book back in 1978. I wished to attract attention to potentialities inherent in selected-area electron diffraction (SAED) which, for various reasons, were not being put to use. By that time, I had at my disposal certain structural data on natural and synthetic minerals obtained using SAED and high-resolution electron microscopy (HREM), and this stimulated my writing this book. There were several aspects concerning these data that I wished to emphasize. First, it was mostly new and understudied minerals that possess the peculiar structural features studied by SAED and HREM. This could interest mineralogists, crystallo chemists, and crystallographers. Second, the results obtained indi cated that, under certain conditions, SAED could be an effective, and sometimes the only possible, method for structure analysis of minerals. This inference was of primary importance, since fine dispersion and poor crystallinity of numerous natural and synthe tic minerals makes their structure study by conventional diffrac tion methods hardly possible. Third, it was demonstrated that in many cases X-ray powder diffraction analysis of dispersed miner als ought to be combined with SAED and local energy dispersion analysis. This was important, since researchers in structural min eralogy quite often ignored, and still ignore even the simplest in formation which is readily available from geometrical analysis of SAED patterns obtained from microcrystals.

Electron Crystallography

Novel Approaches for Structure Determination of Nanosized Materials

Author: Thomas E. Weirich,Xiaodong Zou

Publisher: Springer Science & Business Media

ISBN: 9781402039188

Category: Crystallography

Page: 536

View: 4267

Electron Crystallography

Electron Microscopy and Electron Diffraction

Author: Xiaodong Zou,Sven Hovmöller,Peter Oleynikov

Publisher: Oxford University Press

ISBN: 0199580200

Category: Science

Page: 332

View: 8864

Includes bibliographical references and index.

Electron Crystallography

Author: D. Dorset,Sven Hovmöller,Xiaodong Zou

Publisher: Springer Science & Business Media

ISBN: 9401589712

Category: Science

Page: 440

View: 7277

The re-emergent field of quantitative electron crystallography is described by some of its most eminent practitioners. They describe the theoretical framework for electron scattering, specimen preparation, experimental techniques for optimum data collection, the methodology of structure analysis and refinement, and a range of applications to inorganic materials (including minerals), linear polymers, small organic molecules (including those used in nonlinear optical devices), incommensurately modulated structures (including superconductors), alloys, and integral membrane proteins. The connection between electron crystallography and X-ray crystallography is clearly defined, especially in the utilisation of the latest methods for direct determination of crystallographic phases, as well as the unique role of image analysis of high-resolution electron micrographs for phase determination. Even the aspect of multiple beam dynamic diffraction (once dreaded because it was thought to preclude ab initio analysis) is considered as a beneficial aid for symmetry determination as well as the elucidation of crystallographic phases, and as a criterion for monitoring the progress of structure refinement. Whereas other texts have hitherto preferentially dealt with the analysis of electron diffraction and image data from thin organic materials, this work discusses - with considerable optimism - the prospects of looking at `harder' materials, composed of heavier atoms. Audience: Could be used with profit as a graduate-level course on electron crystallography. Researchers in the area will find a statement of current progress in the field.

Unconventional Electron Microscopy for Molecular Structure Determination

Author: W. Hoppe,R. Mason

Publisher: Vieweg+Teubner Verlag

ISBN: 9783528081171

Category: Science

Page: 226

View: 8470

Generally it is not sufficiently appreciated that electron microscopy is in fact a diffraction method. In essential aspects electron microscopes are more closely related to X-ray diffracto· meters than to light microscopes. In electron microscopes monochromatized radiation and coherent illumination (never used in light microscopy) correspond in X-ray diffractometers to the primary beam with a small divergence. Imaging ina general sense can take place in interference experiments between a primary beam and a scattered beam, or between diffe­ rent deflected scattered beams. This leads to the realization of an old dream in diffracto­ metry, namely to a general experimental solution of the "phase problem". The most im­ pressive analogy, however, concerns the potential of the electron microscope as a tool for structure determination (where the radiation wavelenght is smaller than the atomic distan­ ces). It was therefore considered timely to treat this topic in this series. It was a fortunate cioncidence that in 1976 a Workshop on "Unconventional Electron Microscope Methods for the Investigation of Molecular Structures" (sponsored by the European Molecular Biology Organisation, the Deutsche Forschungsgemeinschaft and the Max-Planck-Gesell­ schaft) took place, and that most speakers presenting introductory lectures agreed to publish their contributions in an expanded version in this volume. This volume is thus not a symposium report in the usual sense since it contains the majority of these introductory lectures only.

Festkörper Probleme

Plenary Lectures of the Divisions Semiconductor Physics, Surface Physics, Low Temperature Physics, High Polymers, Thermodynamics and Statistical Mechanics, of the German Physical Society, Münster, March 19–24, 1973

Author: H. J. Queisser

Publisher: Elsevier

ISBN: 1483157679

Category: Science

Page: 404

View: 4792

Festkorper Probleme XIII: Advances in Solid State Physics is a collection of papers from plenary lectures of the solid states division of the German Physical Society in Munster, on March 19-24, 1973. This collection deals with semiconductor physics, surface phenomena, and surface physics. One paper reviews the findings on experiments on the magnetic, optical, electrical, and structural properties of layer type crystals, particularly metal dichalcogenides. This book then discusses the van der Waals attraction using semi-classical methods to explain the correlation in different atoms. This discussion explains the application of the Schrodinger formalism and the Maxwell equations. One paper also reviews the energy distribution of electrons emitted from solids after ultraviolet radiation or monochromatic X-ray exposure. Another paper reviews the use of clean silicon surfaces associated with electron emitters showing ""negative electron affinity."" A paper then reviews the mechanism of charge-transfer devices, with emphasis on the physics of the transfer processes that happen in surface charge-coupled devices or bulk-charge-couple devices. This compendium will prove useful for materials physicists, scientists, and academicians in the field of advanced physics.

Carbon Nanotubes

Advanced Topics in the Synthesis, Structure, Properties and Applications

Author: Ado Jorio,Gene Dresselhaus,Mildred S. Dresselhaus

Publisher: Springer Science & Business Media

ISBN: 9783540728658

Category: Technology & Engineering

Page: 720

View: 7010

Building on the success of its predecessor, Carbon Nanotubes: Synthesis, Structure, Properties and Applications, this second volume focuses on those areas that have grown rapidly in the past few years. Contributing authors reflect the multidisciplinary nature of the book and are all leaders in their particular areas of research. Among the many topics they cover are graphene and other carbon-like and tube-like materials, which are likely to affect and influence developments in nanotubes within the next five years. Extensive use of illustrations enables you to better understand and visualize key concepts and processes.

Electron Diffraction Techniques

Author: John Maxwell Cowley

Publisher: Oxford University Press

ISBN: 9780198557333

Category: Science

Page: 440

View: 4199

Volume 2 deals with those aspects when there is a stronger correlation of the diffraction phenomena with the electron microscope imaging.

X-Ray and Electron-Diffraction Study of Langmuir-Blodgett Films

Author: L. A. Feigin,Yu. M. Lvov,V. I. Troitsky

Publisher: CRC Press

ISBN: 9783718649051

Category: Science

Page: 100

View: 5464

Discusses the advances in methods of research into the structure of Langmuir-Blodgett multilayers and films with the predetermined alternation of molecular layers. Also included are the structural analysis of films on substrates, the diffraction effects associated with very thin films and news on the latest method of determining the packing of molecules in monomolecular layers.

Progress in Transmission Electron Microscopy 1

Concepts and Techniques

Author: Xiao-Feng Zhang,Ze Zhang

Publisher: Springer Science & Business Media

ISBN: 9783540676805

Category: Science

Page: 365

View: 8101

A wide-ranging description of recent progress and new approaches for researchers and graduate students in microscopy and materials science.

Semiconductor Materials

An Introduction to Basic Principles

Author: B.G. Yacobi

Publisher: Springer Science & Business Media

ISBN: 0306479427

Category: Technology & Engineering

Page: 228

View: 5038

The technological progress is closely related to the developments of various materials and tools made of those materials. Even the different ages have been defined in relation to the materials used. Some of the major attributes of the present-day age (i.e., the electronic materials’ age) are such common tools as computers and fiber-optic telecommunication systems, in which semiconductor materials provide vital components for various mic- electronic and optoelectronic devices in applications such as computing, memory storage, and communication. The field of semiconductors encompasses a variety of disciplines. This book is not intended to provide a comprehensive description of a wide range of semiconductor properties or of a continually increasing number of the semiconductor device applications. Rather, the main purpose of this book is to provide an introductory perspective on the basic principles of semiconductor materials and their applications that are described in a relatively concise format in a single volume. Thus, this book should especially be suitable as an introductory text for a single course on semiconductor materials that may be taken by both undergraduate and graduate engineering students. This book should also be useful, as a concise reference on semiconductor materials, for researchers working in a wide variety of fields in physical and engineering sciences.

Novel Nanocrystalline Alloys and Magnetic Nanomaterials

Author: Brian Cantor

Publisher: CRC Press

ISBN: 9781420033816

Category: Science

Page: 325

View: 1702

Nanocrystalline materials exhibit remarkable structural, electrical, magnetic, and optical properties, which can be exploited in a wide variety of structural and nonstructural applications. Potential uses have been identified in the automotive, electronic, aerospace, clothing, chemical, fuel, and lubrication industries, with applications ranging from flat panel displays to medical implants. Bringing together contributions from leading researchers in academia and industry throughout Europe and Japan, Novel Nanocrystalline Alloys and Magnetic Nanomaterials presents a valuable overview of this fast moving field. Divided into three sections, the book first describes the fabrication and structural characterization of nanocrystalline and amorphous alloys, such as aluminium, nickel, copper, titanium, and zirconium. The second part examines novel nanocrystalline materials that include nano-optoelectronics, steels manufactured by heavy plastic deformation, and metal-ceramic and ceramic-ceramic nanocomposites. The final section reviews the current understanding of magnetic nanomaterials, including nanograined materials, Ni and Fe nanocrystals, soft magnetic Fe-M-B nanocrystalline alloys, and soft and hard ferromagnetic nanocrystalline alloys. It also explores the industrial applications of these nanomaterials, focusing on their use in the energy and telecommunications fields. Combining key coverage of topical developments with well-informed indications of potential trends, this book lays the groundwork for future advances in nanocrystalline alloys and magnetic nanomaterials.