The Finite Element Method for Elliptic Problems

Author: Philippe G. Ciarlet

Publisher: SIAM

ISBN: 0898715148

Category: Mathematics

Page: 530

View: 3272

This is the only book available that fully analyzes the mathematical foundations of the finite element method. Not only is it valuable reference and introduction to current research, it is also a working textbook for graduate courses in numerical analysis, including useful figures and exercises of varying difficulty.

Partielle Differentialgleichungen und numerische Methoden

Author: Stig Larsson,Vidar Thomee

Publisher: Springer-Verlag

ISBN: 3540274227

Category: Mathematics

Page: 272

View: 6734

Das Buch ist für Studenten der angewandten Mathematik und der Ingenieurwissenschaften auf Vordiplomniveau geeignet. Der Schwerpunkt liegt auf der Verbindung der Theorie linearer partieller Differentialgleichungen mit der Theorie finiter Differenzenverfahren und der Theorie der Methoden finiter Elemente. Für jede Klasse partieller Differentialgleichungen, d.h. elliptische, parabolische und hyperbolische, enthält der Text jeweils ein Kapitel zur mathematischen Theorie der Differentialgleichung gefolgt von einem Kapitel zu finiten Differenzenverfahren sowie einem zu Methoden der finiten Elemente. Den Kapiteln zu elliptischen Gleichungen geht ein Kapitel zum Zweipunkt-Randwertproblem für gewöhnliche Differentialgleichungen voran. Ebenso ist den Kapiteln zu zeitabhängigen Problemen ein Kapitel zum Anfangswertproblem für gewöhnliche Differentialgleichungen vorangestellt. Zudem gibt es ein Kapitel zum elliptischen Eigenwertproblem und zur Entwicklung nach Eigenfunktionen. Die Darstellung setzt keine tiefer gehenden Kenntnisse in Analysis und Funktionalanalysis voraus. Das erforderliche Grundwissen über lineare Funktionalanalysis und Sobolev-Räume wird im Anhang im Überblick besprochen.

Galerkin Finite Element Methods for Parabolic Problems

Author: Vidar Thomee

Publisher: Springer Science & Business Media

ISBN: 3662033593

Category: Mathematics

Page: 302

View: 9424

My purpose in this monograph is to present an essentially self-contained account of the mathematical theory of Galerkin finite element methods as applied to parabolic partial differential equations. The emphases and selection of topics reflects my own involvement in the field over the past 25 years, and my ambition has been to stress ideas and methods of analysis rather than to describe the most general and farreaching results possible. Since the formulation and analysis of Galerkin finite element methods for parabolic problems are generally based on ideas and results from the corresponding theory for stationary elliptic problems, such material is often included in the presentation. The basis of this work is my earlier text entitled Galerkin Finite Element Methods for Parabolic Problems, Springer Lecture Notes in Mathematics, No. 1054, from 1984. This has been out of print for several years, and I have felt a need and been encouraged by colleagues and friends to publish an updated version. In doing so I have included most of the contents of the 14 chapters of the earlier work in an updated and revised form, and added four new chapters, on semigroup methods, on multistep schemes, on incomplete iterative solution of the linear algebraic systems at the time levels, and on semilinear equations. The old chapters on fully discrete methods have been reworked by first treating the time discretization of an abstract differential equation in a Hilbert space setting, and the chapter on the discontinuous Galerkin method has been completely rewritten.

Dirichlet-dirichlet Domain Decomposition Methods For Elliptic Problems: H And Hp Finite Element Discretizations

Author: Korneev Vadim Glebiovich,Langer Ulrich

Publisher: World Scientific

ISBN: 9814578479

Category: Mathematics

Page: 484

View: 607

Domain decomposition (DD) methods provide powerful tools for constructing parallel numerical solution algorithms for large scale systems of algebraic equations arising from the discretization of partial differential equations. These methods are well-established and belong to a fast developing area. In this volume, the reader will find a brief historical overview, the basic results of the general theory of domain and space decomposition methods as well as the description and analysis of practical DD algorithms for parallel computing. It is typical to find in this volume that most of the presented DD solvers belong to the family of fast algorithms, where each component is efficient with respect to the arithmetical work. Readers will discover new analysis results for both the well-known basic DD solvers and some DD methods recently devised by the authors, e.g., for elliptic problems with varying chaotically piecewise constant orthotropism without restrictions on the finite aspect ratios.The hp finite element discretizations, in particular, by spectral elements of elliptic equations are given significant attention in current research and applications. This volume is the first to feature all components of Dirichlet-Dirichlet-type DD solvers for hp discretizations devised as numerical procedures which result in DD solvers that are almost optimal with respect to the computational work. The most important DD solvers are presented in the matrix/vector form algorithms that are convenient for practical use.

Numerical Solution of Partial Differential Equations by the Finite Element Method

Author: Claes Johnson

Publisher: Courier Corporation

ISBN: 0486131599

Category: Mathematics

Page: 288

View: 3812

An accessible introduction to the finite element method for solving numeric problems, this volume offers the keys to an important technique in computational mathematics. Suitable for advanced undergraduate and graduate courses, it outlines clear connections with applications and considers numerous examples from a variety of science- and engineering-related specialties.This text encompasses all varieties of the basic linear partial differential equations, including elliptic, parabolic and hyperbolic problems, as well as stationary and time-dependent problems. Additional topics include finite element methods for integral equations, an introduction to nonlinear problems, and considerations of unique developments of finite element techniques related to parabolic problems, including methods for automatic time step control. The relevant mathematics are expressed in non-technical terms whenever possible, in the interests of keeping the treatment accessible to a majority of students.

finite element methods

fifty years of the Courant element

Author: Michel Krizek,Pekka Neittaanmaki,Rolf Stenberg

Publisher: CRC Press

ISBN: 1482277697

Category: Mathematics

Page: 536

View: 962

These proceedings originated from a conference commemorating the 50th anniversary of the publication of Richard Courant's seminal paper, Variational Methods for Problems of Equilibrium and Vibration. These papers address fundamental questions in numerical analysis and the special problems that occur in applying the finite element method to various fields of science and engineering.

The Finite Element Method

An Introduction with Partial Differential Equations

Author: A. J. Davies

Publisher: OUP Oxford

ISBN: 0191630349

Category: Mathematics

Page: 312

View: 4364

The finite element method is a technique for solving problems in applied science and engineering. The essence of this book is the application of the finite element method to the solution of boundary and initial-value problems posed in terms of partial differential equations. The method is developed for the solution of Poisson's equation, in a weighted-residual context, and then proceeds to time-dependent and nonlinear problems. The relationship with the variational approach is also explained. This book is written at an introductory level, developing all the necessary concepts where required. Consequently, it is well-placed to be used as a textbook for a course in finite elements for final year undergraduates, the usual place for studying finite elements. There are worked examples throughout and each chapter has a set of exercises with detailed solutions.

The mathematical basis of finite element methods

with applications to partial differential equations

Author: David Francis Griffiths,Institute of Mathematics and Its Applications

Publisher: Oxford University Press, USA

ISBN: 9780198536055

Category: Mathematics

Page: 189

View: 8474

Combining theoretical insights with practical applications, this stimulating collection provides a state-of-the-art survey of the finite element method, one of the most powerful tools available for the solution of physical problems. Written by leading experts, this volume consider such topics as parabolic Galerkin methods, nonconforming elements, the treatment of singularities in elliptic boundary value problems, and conforming methods for self-adjount elliptic problems. This will be an invaluable basic reference for computational mathematicians and engineers who use finite element methods in academic or industrial research.

Mathematical Theory of Finite and Boundary Element Methods

Author: Schatz,Wendland,Thomee

Publisher: Birkhäuser

ISBN: 3034876300

Category: Juvenile Nonfiction

Page: 268

View: 7118

These are the lecture notes of the seminar "Mathematische Theorie der finiten Element und Randelementmethoden" organized by the "Deutsche Mathematiker-Vereinigung" and held in Dusseldorf from 07. - 14. of June 1987. Finite element methods and the closely related boundary element methods nowadays belong to the standard routines for the computation of solutions to boundary and initial boundary value problems of partial differential equations with many applications as e.g. in elasticity and thermoelasticity, fluid mechanics, acoustics, electromagnetics, scatter ing and diffusion. These methods also stimulated the development of corresponding mathematical numerical analysis. I was very happy that A. Schatz and V. Thomee generously joined the adventure of the seminar and not only gave stimulating lectures but also spent so much time for personal discussion with all the participants. The seminar as well as these notes consist of three parts: 1. An Analysis of the Finite Element Method for Second Order Elliptic Boundary Value Problems by A. H. Schatz. II. On Finite Elements for Parabolic Problems by V. Thomee. III. I30undary Element Methods for Elliptic Problems by \V. L. Wendland. The prerequisites for reading this book are basic knowledge in partial differential equations (including pseudo-differential operators) and in numerical analysis. It was not our intention to present a comprehensive account of the research in this field, but rather to give an introduction and overview to the three different topics which shed some light on recent research.

Numerical Approximation Methods for Elliptic Boundary Value Problems

Finite and Boundary Elements

Author: Olaf Steinbach

Publisher: Springer Science & Business Media

ISBN: 0387688056

Category: Mathematics

Page: 386

View: 2724

This book presents a unified theory of the Finite Element Method and the Boundary Element Method for a numerical solution of second order elliptic boundary value problems. This includes the solvability, stability, and error analysis as well as efficient methods to solve the resulting linear systems. Applications are the potential equation, the system of linear elastostatics and the Stokes system. While there are textbooks on the finite element method, this is one of the first books on Theory of Boundary Element Methods. It is suitable for self study and exercises are included.

Nonlinear elliptic and evolution problems and their finite element approximations

Author: A. Ženíšek

Publisher: Academic Pr

ISBN: 9780127795607

Category: Mathematics

Page: 422

View: 2427

The main objectives of this book are both the theoretical and computational presentation of the finite element method for linear and nonlinear elliptic and evolution problems. An important aspect of the theoretical treatment lies in the proofs of the convergence of approximate solutions to the exact ones and in the error estimates given for various regularity assumptions. Relevant computational details are discussed with reference to a number of computer programs. Particularly noteworthy is the coverage given to novel developments in the treatment of evolutionary problems.****Although this volume contains a number of sophisticated recent advances, its clear and straightforward exposition makes it valuable for researchers and engineers as well as newcomers to the finite element method. Provides a survey of the theory of function spaces as used in finite element methods**Covers new approaches to the proofs of convergence and optimum error estimates**Algorithms and numerical aspects are represented for both linear and nonlinear problems

Partial Differential Equations and the Finite Element Method

Author: Pavel Ŝolín

Publisher: John Wiley & Sons

ISBN: 0471764094

Category: Mathematics

Page: 512

View: 7910

A systematic introduction to partial differential equations and modern finite element methods for their efficientnumerical solution Partial Differential Equations and the Finite Element Methodprovides a much-needed, clear, and systematic introduction tomodern theory of partial differential equations (PDEs) and finiteelement methods (FEM). Both nodal and hierachic concepts of the FEMare examined. Reflecting the growing complexity and multiscalenature of current engineering and scientific problems, the authoremphasizes higher-order finite element methods such as the spectralor hp-FEM. A solid introduction to the theory of PDEs and FEM contained inChapters 1-4 serves as the core and foundation of the publication.Chapter 5 is devoted to modern higher-order methods for thenumerical solution of ordinary differential equations (ODEs) thatarise in the semidiscretization of time-dependent PDEs by theMethod of Lines (MOL). Chapter 6 discusses fourth-order PDEs rootedin the bending of elastic beams and plates and approximates theirsolution by means of higher-order Hermite and Argyris elements.Finally, Chapter 7 introduces the reader to various PDEs governingcomputational electromagnetics and describes their finite elementapproximation, including modern higher-order edge elements forMaxwell's equations. The understanding of many theoretical and practical aspects of bothPDEs and FEM requires a solid knowledge of linear algebra andelementary functional analysis, such as functions and linearoperators in the Lebesgue, Hilbert, and Sobolev spaces. Thesetopics are discussed with the help of many illustrative examples inAppendix A, which is provided as a service for those readers whoneed to gain the necessary background or require a refreshertutorial. Appendix B presents several finite element computationsrooted in practical engineering problems and demonstrates thebenefits of using higher-order FEM. Numerous finite element algorithms are written out in detailalongside implementation discussions. Exercises, including manythat involve programming the FEM, are designed to assist the readerin solving typical problems in engineering and science. Specifically designed as a coursebook, this student-testedpublication is geared to upper-level undergraduates and graduatestudents in all disciplines of computational engineeringandscience. It is also a practical problem-solving reference forresearchers, engineers, and physicists.

Partial Differential Equations with Numerical Methods

Author: Stig Larsson,Vidar Thomee

Publisher: Springer Science & Business Media

ISBN: 3540887059

Category: Mathematics

Page: 262

View: 428

The main theme is the integration of the theory of linear PDE and the theory of finite difference and finite element methods. For each type of PDE, elliptic, parabolic, and hyperbolic, the text contains one chapter on the mathematical theory of the differential equation, followed by one chapter on finite difference methods and one on finite element methods. The chapters on elliptic equations are preceded by a chapter on the two-point boundary value problem for ordinary differential equations. Similarly, the chapters on time-dependent problems are preceded by a chapter on the initial-value problem for ordinary differential equations. There is also one chapter on the elliptic eigenvalue problem and eigenfunction expansion. The presentation does not presume a deep knowledge of mathematical and functional analysis. The required background on linear functional analysis and Sobolev spaces is reviewed in an appendix. The book is suitable for advanced undergraduate and beginning graduate students of applied mathematics and engineering.

Numerical Methods for Elliptic Problems with Singularities

Boundary Methods and Nonconforming Combinations

Author: Zi-Cai Li

Publisher: World Scientific

ISBN: 9789810202927

Category: Mathematics

Page: 258

View: 1691

This book presents two kinds of numerical methods for solving elliptic boundary value problems with singularities. Part I gives the boundary methods which use analytic and singular expansions, and Part II the nonconforming methods combining finite element methods (FEM) (or finite difference methods (FDM)) and singular (or analytic) expansions. The advantage of these methods over the standard FEM and FDM is that they can cope with complicated geometrical boundaries and boundary conditions as well as singularity. Therefore, accurate numerical solutions near singularities can be obtained. The description of methods, error bounds, stability analysis and numerical experiments are provided for the typical problems with angular, interface and infinity singularities. However, the approximate techniques and coupling strategy given can be applied to solving other PDE and engineering problems with singularities as well. This book is derived from the author's Ph. D. thesis which won the 1987 best doctoral dissertation award given by the Canadian Applied Mathematics Society.

Lectures on Numerical Methods for Non-Linear Variational Problems

Author: R. Glowinski

Publisher: Springer Science & Business Media

ISBN: 3540775064

Category: Mathematics

Page: 496

View: 9785

When Herb Keller suggested, more than two years ago, that we update our lectures held at the Tata Institute of Fundamental Research in 1977, and then have it published in the collection Springer Series in Computational Physics, we thought, at first, that it would be an easy task. Actually, we realized very quickly that it would be more complicated than what it seemed at first glance, for several reasons: 1. The first version of Numerical Methods for Nonlinear Variational Problems was, in fact, part of a set of monographs on numerical mat- matics published, in a short span of time, by the Tata Institute of Fun- mental Research in its well-known series Lectures on Mathematics and Physics; as might be expected, the first version systematically used the material of the above monographs, this being particularly true for Lectures on the Finite Element Method by P. G. Ciarlet and Lectures on Optimization—Theory and Algorithms by J. Cea. This second version had to be more self-contained. This necessity led to some minor additions in Chapters I-IV of the original version, and to the introduction of a chapter (namely, Chapter Y of this book) on relaxation methods, since these methods play an important role in various parts of this book.

The Finite Element Method and Its Reliability

Author: Ivo Babuška,Theofanis Strouboulis

Publisher: Oxford University Press

ISBN: 9780198502760

Category: Mathematics

Page: 802

View: 7462

The book presents the mathematical theory of the finite element method and focuses on the question of how reliable computed results really are. It addresses among other topics the local behaviour, errors caused by pollution, superconvergence, and optimal meshes. Minimal prerequisites in numerical mathematics are required, and many illustrations and computational examples have been included to aid understanding.

Advanced Finite Element Methods and Applications

Author: Thomas Apel,Olaf Steinbach

Publisher: Springer Science & Business Media

ISBN: 3642303161

Category: Technology & Engineering

Page: 376

View: 5287

This volume on some recent aspects of finite element methods and their applications is dedicated to Ulrich Langer and Arnd Meyer on the occasion of their 60th birthdays in 2012. Their work combines the numerical analysis of finite element algorithms, their efficient implementation on state of the art hardware architectures, and the collaboration with engineers and practitioners. In this spirit, this volume contains contributions of former students and collaborators indicating the broad range of their interests in the theory and application of finite element methods. Topics cover the analysis of domain decomposition and multilevel methods, including hp finite elements, hybrid discontinuous Galerkin methods, and the coupling of finite and boundary element methods; the efficient solution of eigenvalue problems related to partial differential equations with applications in electrical engineering and optics; and the solution of direct and inverse field problems in solid mechanics.