Thermal Physics, Second Edition

Author: C.B.P. Finn

Publisher: CRC Press

ISBN: 9780748743797

Category: Science

Page: 272

View: 5857

Concise yet thorough, accessible, authoritative, and affordable. These are the hallmarks of books in the remarkable Physics and its Applications series. Thermodynamics is an essential part of any physical sciences education, but it is so full of pitfalls and subtleties, that many students fail to appreciate its elegance and power. In Thermal Physics, the author emphasizes understanding the basic ideas and shows how the important thermodynamics results can be simply obtained from the fundamental relations without getting lost in a maze of partial differentials. In this second edition, Dr. Finn incorporated new sections on scales of temperature, availability, the degradation of energy, and lattice defects. The text contains ample illustrations and examples of applications of thermodynamics in physics, engineering, and chemistry.

Thermal Physics

Author: Charles Kittel,Herbert Kroemer

Publisher: Macmillan

ISBN: 9780716710882

Category: Science

Page: 473

View: 333

CONGRATULATIONS TO HERBERT KROEMER, 2000 NOBEL LAUREATE FOR PHYSICS For upper-division courses in thermodynamics or statistical mechanics, Kittel and Kroemer offers a modern approach to thermal physics that is based on the idea that all physical systems can be described in terms of their discrete quantum states, rather than drawing on 19th-century classical mechanics concepts.

Concepts in Thermal Physics

Author: Stephen Blundell,Katherine M. Blundell

Publisher: Oxford University Press on Demand

ISBN: 0199562091

Category: Science

Page: 493

View: 9741

This text provides a modern introduction to the main principles of thermal physics, thermodynamics and statistical mechanics. The key concepts are presented and new ideas are illustrated with worked examples as well as description of the historical background to their discovery.

Statistical and Thermal Physics

With Computer Applications

Author: Harvey Gould,Jan Tobochnik

Publisher: Princeton University Press

ISBN: 9781400837038

Category: Science

Page: 552

View: 5079

This textbook carefully develops the main ideas and techniques of statistical and thermal physics and is intended for upper-level undergraduate courses. The authors each have more than thirty years' experience in teaching, curriculum development, and research in statistical and computational physics. Statistical and Thermal Physics begins with a qualitative discussion of the relation between the macroscopic and microscopic worlds and incorporates computer simulations throughout the book to provide concrete examples of important conceptual ideas. Unlike many contemporary texts on thermal physics, this book presents thermodynamic reasoning as an independent way of thinking about macroscopic systems. Probability concepts and techniques are introduced, including topics that are useful for understanding how probability and statistics are used. Magnetism and the Ising model are considered in greater depth than in most undergraduate texts, and ideal quantum gases are treated within a uniform framework. Advanced chapters on fluids and critical phenomena are appropriate for motivated undergraduates and beginning graduate students. Integrates Monte Carlo and molecular dynamics simulations as well as other numerical techniques throughout the text Provides self-contained introductions to thermodynamics and statistical mechanics Discusses probability concepts and methods in detail Contains ideas and methods from contemporary research Includes advanced chapters that provide a natural bridge to graduate study Features more than 400 problems Programs are open source and available in an executable cross-platform format Solutions manual (available only to teachers)

Statistical Physics

Author: Franz Mandl

Publisher: John Wiley & Sons

ISBN: 1118723430

Category: Science

Page: 248

View: 1296

The Manchester Physics Series General Editors: D. J. Sandiford; F. Mandl; A. C. Phillips Department of Physics and Astronomy, University of Manchester Properties of Matter B. H. Flowers and E. Mendoza Optics Second Edition F. G. Smith and J. H. Thomson Statistical Physics Second Edition E. Mandl Electromagnetism Second Edition I. S. Grant and W. R. Phillips Statistics R. J. Barlow Solid State Physics Second Edition J. R. Hook and H. E. Hall Quantum Mechanics F. Mandl Particle Physics Second Edition B. R. Martin and G. Shaw The Physics of Stars Second Edition A. C. Phillips Computing for Scientists R. J. Barlow and A. R. Barnett Statistical Physics, Second Edition develops a unified treatment of statistical mechanics and thermodynamics, which emphasises the statistical nature of the laws of thermodynamics and the atomic nature of matter. Prominence is given to the Gibbs distribution, leading to a simple treatment of quantum statistics and of chemical reactions. Undergraduate students of physics and related sciences will find this a stimulating account of the basic physics and its applications. Only an elementary knowledge of kinetic theory and atomic physics, as well as the rudiments of quantum theory, are presupposed for an understanding of this book. Statistical Physics, Second Edition features: A fully integrated treatment of thermodynamics and statistical mechanics. A flow diagram allowing topics to be studied in different orders or omitted altogether. Optional "starred" and highlighted sections containing more advanced and specialised material for the more ambitious reader. Sets of problems at the end of each chapter to help student understanding. Hints for solving the problems are given in an Appendix.

Thermal Physics

Author: Ralph Baierlein

Publisher: Cambridge University Press

ISBN: 9780521658386

Category: Science

Page: 442

View: 1527

Clear and reader-friendly, this is an ideal textbook for students seeking an introduction to thermal physics. Written by an experienced teacher and extensively class-tested, Thermal Physics provides a comprehensive grounding in thermodynamics, statistical mechanics, and kinetic theory. A key feature of this text is its readily accessible introductory chapters, which begin with a review of fundamental ideas. Entropy, conceived microscopically and statistically, and the Second Law of Thermodynamics are introduced early in the book. Throughout, topics are built on a conceptual foundation of four linked elements: entropy and the Second Law, the canonical probability distribution, the partition function, and the chemical potential. As well as providing a solid preparation in the basics of the subject, the text goes on to explain exciting recent developments such as Bose-Einstein condensation and critical phenomena. Key equations are highlighted throughout, and each chapter contains a summary of essential ideas and an extensive set of problems of varying degrees of difficulty. A free solutions manual is available for instructors (ISBN 0521 658608). Thermal Physics is suitable for both undergraduates and graduates in physics and astronomy.

Thermal Physics

Concepts and Practice

Author: Allen L. Wasserman

Publisher: Cambridge University Press

ISBN: 1139499319

Category: Science

Page: N.A

View: 1280

Thermodynamics has benefited from nearly 100 years of parallel development with quantum mechanics. As a result, thermal physics has been considerably enriched in concepts, technique and purpose, and now has a dominant role in the developments of physics, chemistry and biology. This unique book explores the meaning and application of these developments using quantum theory as the starting point. The book links thermal physics and quantum mechanics in a natural way. Concepts are combined with interesting examples, and entire chapters are dedicated to applying the principles to familiar, practical and unusual situations. Together with end-of-chapter exercises, this book gives advanced undergraduate and graduate students a modern perception and appreciation for this remarkable subject.

Statistical and Thermal Physics

Fundamentals and Applications

Author: M.D. Sturge

Publisher: CRC Press

ISBN: 143986442X

Category: Science

Page: 480

View: 3117

This book is based on many years of teaching statistical and thermal physics. It assumes no previous knowledge of thermodynamics, kinetic theory, or probability---the only prerequisites are an elementary knowledge of classical and modern physics, and of multivariable calculus. The first half of the book introduces the subject inductively but rigorously, proceeding from the concrete and specific to the abstract and general. In clear physical language the book explains the key concepts, such as temperature, heat, entropy, free energy, chemical potential, and distributions, both classical and quantum. The second half of the book applies these concepts to a wide variety of phenomena, including perfect gases, heat engines, and transport processes. Each chapter contains fully worked examples and real-world problems drawn from physics, astronomy, biology, chemistry, electronics, and mechanical engineering.

Thermal Physics

Entropy and Free Energies

Author: Joon Chang Lee

Publisher: World Scientific Publishing Company

ISBN: 9813105933

Category: Science

Page: 212

View: 8832

This book is an informal, readable introduction to the basic ideas of thermal physics. It is aimed at making the reader feel comfortable with the extremum principles of entropy and free energies. There is a repeating theme: Molecules (spins) do X to maximize their entropy, and molecules (spins) do XX to minimize their free energy. This finally leads to the idea of the Landau-Ginzburg free energy functional. The author illustrates how powerful the idea is by using two examples from phase transitions.

Finn's Thermal Physics, Third Edition

Author: Andrew Rex

Publisher: CRC Press

ISBN: 1498718884

Category: Science

Page: 386

View: 6078

This fully updated and expanded new edition continues to provide the most readable, concise, and easy-to-follow introduction to thermal physics. While maintaining the style of the original work, the book now covers statistical mechanics and incorporates worked examples systematically throughout the text. It also includes more problems and essential updates, such as discussions on superconductivity, magnetism, Bose-Einstein condensation, and climate change. Anyone needing to acquire an intuitive understanding of thermodynamics from first principles will find this third edition indispensable. Andrew Rex is professor of physics at the University of Puget Sound in Tacoma, Washington. He is author of several textbooks and the popular science book, Commonly Asked Questions in Physics.

An Introduction to Thermal Physics

Author: Daniel V. Schroeder

Publisher: N.A

ISBN: 9781292026213

Category: Statistical dynamics

Page: 331

View: 1287

This text provides a balanced, well-organized treatment of thermodynamics and statistical mechanics, making thermal physics interesting and accessible to anyone who has completed a year of calculus-based introductory physics. Part I introduces essential concepts of thermodynamics and statistical mechanics from a unified view, applying concepts in a select number of illustrative examples. Parts II and III explore further applications of classical thermodynamics and statistical mechanics. Throughout, the emphasis is on real-world applications.

Fundamentals of Statistical and Thermal Physics

Author: F. Reif

Publisher: Waveland Press

ISBN: 1478610050

Category: Science

Page: 651

View: 9979

All macroscopic systems consist ultimately of atoms obeying the laws of quantum mechanics. That premise forms the basis for this comprehensive text, intended for a first upper-level course in statistical and thermal physics. Reif emphasizes that the combination of microscopic concepts with some statistical postulates leads readily to conclusions on a purely macroscopic level. The authors writing style and penchant for description energize interest in condensed matter physics as well as provide a conceptual grounding with information that is crystal clear and memorable. Reif first introduces basic probability concepts and statistical methods used throughout all of physics. Statistical ideas are then applied to systems of particles in equilibrium to enhance an understanding of the basic notions of statistical mechanics, from which derive the purely macroscopic general statements of thermodynamics. Next, he turns to the more complicated equilibrium situations, such as phase transformations and quantum gases, before discussing nonequilibrium situations in which he treats transport theory and dilute gases at varying levels of sophistication. In the last chapter, he addresses some general questions involving irreversible processes and fluctuations. A large amount of material is presented to facilitate students later access to more advanced works, to allow those with higher levels of curiosity to read beyond the minimum given on a topic, and to enhance understanding by presenting several ways of looking at a particular question. Formatting within the text either signals material that instructors can assign at their own discretion or highlights important results for easy reference to them. Additionally, by solving many of the 230 problems contained in the text, students activate and embed their knowledge of the subject matter.

Understanding Physics

Author: Michael Mansfield,Colm O'Sullivan

Publisher: John Wiley & Sons

ISBN: 1118437829

Category: Science

Page: 696

View: 3166

Understanding Physics – Second edition is a comprehensive, yet compact, introductory physics textbook aimed at physics undergraduates and also at engineers and other scientists taking a general physics course. Written with today's students in mind, this text covers the core material required by an introductory course in a clear and refreshing way. A second colour is used throughout to enhance learning and understanding. Each topic is introduced from first principles so that the text is suitable for students without a prior background in physics. At the same time the book is designed to enable students to proceed easily to subsequent courses in physics and may be used to support such courses. Mathematical methods (in particular, calculus and vector analysis) are introduced within the text as the need arises and are presented in the context of the physical problems which they are used to analyse. Particular aims of the book are to demonstrate to students that the easiest, most concise and least ambiguous way to express and describe phenomena in physics is by using the language of mathematics and that, at this level, the total amount of mathematics required is neither large nor particularly demanding. 'Modern physics' topics (relativity and quantum mechanics) are introduced at an earlier stage than is usually found in introductory textbooks and are integrated with the more 'classical' material from which they have evolved. This book encourages students to develop an intuition for relativistic and quantum concepts at as early a stage as is practicable. The text takes a reflective approach towards the scientific method at all stages and, in keeping with the title of the text, emphasis is placed on understanding of, and insight into, the material presented.

Molecular Driving Forces

Statistical Thermodynamics in Biology, Chemistry, Physics, and Nanoscience

Author: Ken Dill,Sarina Bromberg

Publisher: Garland Science

ISBN: 1136672990

Category: Science

Page: 720

View: 6387

The VitalBook e-book version of Molecular Driving Forces is only available in the US and Canada at the present time. To purchase or rent please visit Molecular Driving Forces, Second Edition is an introductory statistical thermodynamics text that describes the principles and forces that drive chemical and biological processes. It demonstrates how the complex behaviors of molecules can result from a few simple physical processes, and how simple models provide surprisingly accurate insights into the workings of the molecular world. Widely adopted in its First Edition, Molecular Driving Forces is regarded by teachers and students as an accessible textbook that illuminates underlying principles and concepts. The Second Edition includes two brand new chapters: (1) "Microscopic Dynamics" introduces single molecule experiments; and (2) "Molecular Machines" considers how nanoscale machines and engines work. "The Logic of Thermodynamics" has been expanded to its own chapter and now covers heat, work, processes, pathways, and cycles. New practical applications, examples, and end-of-chapter questions are integrated throughout the revised and updated text, exploring topics in biology, environmental and energy science, and nanotechnology. Written in a clear and reader-friendly style, the book provides an excellent introduction to the subject for novices while remaining a valuable resource for experts.

Thermal Physics

Thermodynamics and Statistical Mechanics for Scientists and Engineers

Author: Robert Floyd Sekerka

Publisher: Elsevier

ISBN: 0128033371

Category: Science

Page: 610

View: 7335

In Thermal Physics: Thermodynamics and Statistical Mechanics for Scientists and Engineers, the fundamental laws of thermodynamics are stated precisely as postulates and subsequently connected to historical context and developed mathematically. These laws are applied systematically to topics such as phase equilibria, chemical reactions, external forces, fluid-fluid surfaces and interfaces, and anisotropic crystal-fluid interfaces. Statistical mechanics is presented in the context of information theory to quantify entropy, followed by development of the most important ensembles: microcanonical, canonical, and grand canonical. A unified treatment of ideal classical, Fermi, and Bose gases is presented, including Bose condensation, degenerate Fermi gases, and classical gases with internal structure. Additional topics include paramagnetism, adsorption on dilute sites, point defects in crystals, thermal aspects of intrinsic and extrinsic semiconductors, density matrix formalism, the Ising model, and an introduction to Monte Carlo simulation. Throughout the book, problems are posed and solved to illustrate specific results and problem-solving techniques. Includes applications of interest to physicists, physical chemists, and materials scientists, as well as materials, chemical, and mechanical engineers Suitable as a textbook for advanced undergraduates, graduate students, and practicing researchers Develops content systematically with increasing order of complexity Self-contained, including nine appendices to handle necessary background and technical details

Statistical Physics and Thermodynamics

An Introduction to Key Concepts

Author: Jochen Rau

Publisher: Oxford University Press

ISBN: 0199595062

Category: Science

Page: 208

View: 2881

Statistical physics and thermodynamics describe the behaviour of systems on the macroscopic scale. Their methods are applicable to a wide range of phenomena: from heat engines to chemical reactions, from the interior of stars to the melting of ice. Indeed, the laws of thermodynamics are among the most universal ones of all laws of physics. Yet this subject can prove difficult to grasp. Many view thermodynamics as merely a collection of ad hoc recipes, or are confused by unfamiliar novel concepts, such as the entropy, which have little in common with the deterministic theories to which students have got accustomed in other areas of physics. This text provides a concise yet thorough introduction to the key concepts which underlie statistical physics and thermodynamics. It begins with a review of classical probability theory and quantum theory, as well as a careful discussion of the notions of information and entropy, prior to embarking on the development of statistical physics proper. The crucial steps leading from the microscopic to the macroscopic domain are rendered transparent. In particular, the laws of thermodynamics are shown to emerge as natural consequences of the statistical framework. While the emphasis is on clarifying the basic concepts, the text also contains a wealth of applications and classroom-tested exercises, covering all major topics of a standard course on statistical physics and thermodynamics.

Heat Transfer Physics

Author: Massoud Kaviany

Publisher: Cambridge University Press

ISBN: 1107041783

Category: Science

Page: 688

View: 1323

This graduate textbook describes atomic-level kinetics (mechanisms and rates) of thermal energy storage, transport (conduction, convection, and radiation), and transformation (various energy conversions) by principal energy carriers. The approach combines the fundamentals of molecular orbitals-potentials, statistical thermodynamics, computational molecular dynamics, quantum energy states, transport theories, solid-state and fluid-state physics, and quantum optics. The textbook presents a unified theory, over fine-structure/molecular-dynamics/Boltzmann/macroscopic length and time scales, of heat transfer kinetics in terms of transition rates and relaxation times, and its modern applications, including nano- and microscale size effects. Numerous examples, illustrations, and homework problems with answers that enhance learning are included. This new edition includes applications in energy conversion (including chemical bond, nuclear, and solar), expanded examples of size effects, inclusion of junction quantum transport, and discussion of graphene and its phonon and electronic conductances. New appendix coverage of Phonon Contributions Seebeck Coefficient and Monte Carlo Methods are also included.

Introduction to Thermodynamics and Kinetic Theory of Matter

Author: Anatoly I. Burshtein

Publisher: John Wiley & Sons

ISBN: 3527618120

Category: Science

Page: 349

View: 8332

Imparts the similarities and differences between ratified and condensed matter, classical and quantum systems as well as real and ideal gases. Presents the quasi-thermodynamic theory of gas-liquid interface and its application for density profile calculation within the van der Waals theory of surface tension. Uses inductive logic to lead readers from observation and facts to personal interpretation and from specific conclusions to general ones.