Topology and Geometry for Physicists

Author: Charles Nash,Siddhartha Sen

Publisher: Courier Corporation

ISBN: 0486318362

Category: Mathematics

Page: 320

View: 4370

Differential geometry and topology are essential tools for many theoretical physicists, particularly in the study of condensed matter physics, gravity, and particle physics. Written by physicists for physics students, this text introduces geometrical and topological methods in theoretical physics and applied mathematics. It assumes no detailed background in topology or geometry, and it emphasizes physical motivations, enabling students to apply the techniques to their physics formulas and research. "Thoroughly recommended" by The Physics Bulletin, this volume's physics applications range from condensed matter physics and statistical mechanics to elementary particle theory. Its main mathematical topics include differential forms, homotopy, homology, cohomology, fiber bundles, connection and covariant derivatives, and Morse theory.

Curvature in Mathematics and Physics

Author: Shlomo Sternberg

Publisher: Courier Corporation

ISBN: 0486292711

Category: Mathematics

Page: 416

View: 7628

Expert treatment introduces semi-Riemannian geometry and its principal physical application, Einstein's theory of general relativity, using the Cartan exterior calculus as a principal tool. Prerequisites include linear algebra and advanced calculus. 2012 edition.

Topology and Geometry for Physics

Author: Helmut Eschrig

Publisher: Springer

ISBN: 3642147003

Category: Science

Page: 390

View: 7342

A concise but self-contained introduction of the central concepts of modern topology and differential geometry on a mathematical level is given specifically with applications in physics in mind. All basic concepts are systematically provided including sketches of the proofs of most statements. Smooth finite-dimensional manifolds, tensor and exterior calculus operating on them, homotopy, (co)homology theory including Morse theory of critical points, as well as the theory of fiber bundles and Riemannian geometry, are treated. Examples from physics comprise topological charges, the topology of periodic boundary conditions for solids, gauge fields, geometric phases in quantum physics and gravitation.

Geometry and Physics

Author: Jürgen Jost

Publisher: Springer Science & Business Media

ISBN: 9783642005411

Category: Mathematics

Page: 217

View: 6216

"Geometry and Physics" addresses mathematicians wanting to understand modern physics, and physicists wanting to learn geometry. It gives an introduction to modern quantum field theory and related areas of theoretical high-energy physics from the perspective of Riemannian geometry, and an introduction to modern geometry as needed and utilized in modern physics. Jürgen Jost, a well-known research mathematician and advanced textbook author, also develops important geometric concepts and methods that can be used for the structures of physics. In particular, he discusses the Lagrangians of the standard model and its supersymmetric extensions from a geometric perspective.

Geometrical Methods of Mathematical Physics

Author: Bernard F. Schutz

Publisher: Cambridge University Press

ISBN: 1107268141

Category: Science

Page: N.A

View: 4821

In recent years the methods of modern differential geometry have become of considerable importance in theoretical physics and have found application in relativity and cosmology, high-energy physics and field theory, thermodynamics, fluid dynamics and mechanics. This textbook provides an introduction to these methods - in particular Lie derivatives, Lie groups and differential forms - and covers their extensive applications to theoretical physics. The reader is assumed to have some familiarity with advanced calculus, linear algebra and a little elementary operator theory. The advanced physics undergraduate should therefore find the presentation quite accessible. This account will prove valuable for those with backgrounds in physics and applied mathematics who desire an introduction to the subject. Having studied the book, the reader will be able to comprehend research papers that use this mathematics and follow more advanced pure-mathematical expositions.

Differential Geometry and Mathematical Physics

Part II. Fibre Bundles, Topology and Gauge Fields

Author: Gerd Rudolph,Matthias Schmidt

Publisher: Springer

ISBN: 9402409599

Category: Science

Page: 830

View: 1630

The book is devoted to the study of the geometrical and topological structure of gauge theories. It consists of the following three building blocks:- Geometry and topology of fibre bundles,- Clifford algebras, spin structures and Dirac operators,- Gauge theory.Written in the style of a mathematical textbook, it combines a comprehensive presentation of the mathematical foundations with a discussion of a variety of advanced topics in gauge theory.The first building block includes a number of specific topics, like invariant connections, universal connections, H-structures and the Postnikov approximation of classifying spaces.Given the great importance of Dirac operators in gauge theory, a complete proof of the Atiyah-Singer Index Theorem is presented. The gauge theory part contains the study of Yang-Mills equations (including the theory of instantons and the classical stability analysis), the discussion of various models with matter fields (including magnetic monopoles, the Seiberg-Witten model and dimensional reduction) and the investigation of the structure of the gauge orbit space. The final chapter is devoted to elements of quantum gauge theory including the discussion of the Gribov problem, anomalies and the implementation of the non-generic gauge orbit strata in the framework of Hamiltonian lattice gauge theory.The book is addressed both to physicists and mathematicians. It is intended to be accessible to students starting from a graduate level.

Differential Topology and Quantum Field Theory

Author: Charles Nash

Publisher: Elsevier

ISBN: 9780125140768

Category: Mathematics

Page: 386

View: 4949

The remarkable developments in differential topology and how these recent advances have been applied as a primary research tool in quantum field theory are presented here in a style reflecting the genuinely two-sided interaction between mathematical physics and applied mathematics. The author, following his previous work (Nash/Sen: Differential Topology for Physicists, Academic Press, 1983), covers elliptic differential and pseudo-differential operators, Atiyah-Singer index theory, topological quantum field theory, string theory, and knot theory. The explanatory approach serves to illuminate and clarify these theories for graduate students and research workers entering the field for the first time. Treats differential geometry, differential topology, and quantum field theory Includes elliptic differential and pseudo-differential operators, Atiyah-Singer index theory, topological quantum field theory, string theory, and knot theory Tackles problems of quantum field theory using differential topology as a tool

Mathematics for Physics

A Guided Tour for Graduate Students

Author: Michael Stone,Paul Goldbart

Publisher: Cambridge University Press

ISBN: 1139480618

Category: Science

Page: N.A

View: 3391

An engagingly-written account of mathematical tools and ideas, this book provides a graduate-level introduction to the mathematics used in research in physics. The first half of the book focuses on the traditional mathematical methods of physics – differential and integral equations, Fourier series and the calculus of variations. The second half contains an introduction to more advanced subjects, including differential geometry, topology and complex variables. The authors' exposition avoids excess rigor whilst explaining subtle but important points often glossed over in more elementary texts. The topics are illustrated at every stage by carefully chosen examples, exercises and problems drawn from realistic physics settings. These make it useful both as a textbook in advanced courses and for self-study. Password-protected solutions to the exercises are available to instructors at www.cambridge.org/9780521854030.

Geometry: A Comprehensive Course

Author: Dan Pedoe

Publisher: Courier Corporation

ISBN: 0486131734

Category: Mathematics

Page: 464

View: 8455

Introduction to vector algebra in the plane; circles and coaxial systems; mappings of the Euclidean plane; similitudes, isometries, Moebius transformations, much more. Includes over 500 exercises.

The Geometry of Physics

An Introduction

Author: Theodore Frankel

Publisher: Cambridge University Press

ISBN: 1139505610

Category: Mathematics

Page: N.A

View: 7763

This book provides a working knowledge of those parts of exterior differential forms, differential geometry, algebraic and differential topology, Lie groups, vector bundles and Chern forms that are essential for a deeper understanding of both classical and modern physics and engineering. Included are discussions of analytical and fluid dynamics, electromagnetism (in flat and curved space), thermodynamics, the Dirac operator and spinors, and gauge fields, including Yang–Mills, the Aharonov–Bohm effect, Berry phase and instanton winding numbers, quarks and quark model for mesons. Before discussing abstract notions of differential geometry, geometric intuition is developed through a rather extensive introduction to the study of surfaces in ordinary space. The book is ideal for graduate and advanced undergraduate students of physics, engineering or mathematics as a course text or for self study. This third edition includes an overview of Cartan's exterior differential forms, which previews many of the geometric concepts developed in the text.

Differential Geometry for Physicists

Author: Bo-Yu Hou,Bo-Yuan Hou

Publisher: World Scientific Publishing Company

ISBN: 9813105097

Category: Mathematics

Page: 560

View: 7665

This book is divided into fourteen chapters, with 18 appendices as introduction to prerequisite topological and algebraic knowledge, etc. The first seven chapters focus on local analysis. This part can be used as a fundamental textbook for graduate students of theoretical physics. Chapters 8–10 discuss geometry on fibre bundles, which facilitates further reference for researchers. The last four chapters deal with the Atiyah-Singer index theorem, its generalization and its application, quantum anomaly, cohomology field theory and noncommutative geometry, giving the reader a glimpse of the frontier of current research in theoretical physics.

Geometry, Topology and Physics, Second Edition

Author: Mikio Nakahara

Publisher: CRC Press

ISBN: 9780750306065

Category: Mathematics

Page: 596

View: 7711

Differential geometry and topology have become essential tools for many theoretical physicists. In particular, they are indispensable in theoretical studies of condensed matter physics, gravity, and particle physics. Geometry, Topology and Physics, Second Edition introduces the ideas and techniques of differential geometry and topology at a level suitable for postgraduate students and researchers in these fields. The second edition of this popular and established text incorporates a number of changes designed to meet the needs of the reader and reflect the development of the subject. The book features a considerably expanded first chapter, reviewing aspects of path integral quantization and gauge theories. Chapter 2 introduces the mathematical concepts of maps, vector spaces, and topology. The following chapters focus on more elaborate concepts in geometry and topology and discuss the application of these concepts to liquid crystals, superfluid helium, general relativity, and bosonic string theory. Later chapters unify geometry and topology, exploring fiber bundles, characteristic classes, and index theorems. New to this second edition is the proof of the index theorem in terms of supersymmetric quantum mechanics. The final two chapters are devoted to the most fascinating applications of geometry and topology in contemporary physics, namely the study of anomalies in gauge field theories and the analysis of Polakov's bosonic string theory from the geometrical point of view. Geometry, Topology and Physics, Second Edition is an ideal introduction to differential geometry and topology for postgraduate students and researchers in theoretical and mathematical physics.

Differential Geometry, Gauge Theories, and Gravity

Author: M. Göckeler,T. Schücker

Publisher: Cambridge University Press

ISBN: 9780521378215

Category: Mathematics

Page: 230

View: 3994

Cambridge University Press is committed to keeping scholarly work in print for as long as possible. A short print-run of this academic paperback has been produced using digital technology. This technology has enabled Cambridge to keep the book in print for specialists and students when traditional methods of reprinting would not have been feasible. While the new digital cover differs from the original, the text content is identical to that of previous printings.

Gauge Theory and Variational Principles

Author: David Bleecker

Publisher: Courier Corporation

ISBN: 0486151875

Category: Science

Page: 208

View: 5031

Covers principal fiber bundles and connections; curvature; particle fields, Lagrangians, and gauge invariance; inhomogeneous field equations; free Dirac electron fields; calculus on frame bundle; and unification of gauge fields and gravitation. 1981 edition

Differential Forms and Connections

Author: R. W. R. Darling

Publisher: Cambridge University Press

ISBN: 9780521468008

Category: Mathematics

Page: 256

View: 8507

This book introduces the tools of modern differential geometry--exterior calculus, manifolds, vector bundles, connections--and covers both classical surface theory, the modern theory of connections, and curvature. Also included is a chapter on applications to theoretical physics. The author uses the powerful and concise calculus of differential forms throughout. Through the use of numerous concrete examples, the author develops computational skills in the familiar Euclidean context before exposing the reader to the more abstract setting of manifolds. The only prerequisites are multivariate calculus and linear algebra; no knowledge of topology is assumed. Nearly 200 exercises make the book ideal for both classroom use and self-study for advanced undergraduate and beginning graduate students in mathematics, physics, and engineering.

Differential Geometry

Author: Erwin Kreyszig

Publisher: Courier Corporation

ISBN: 0486318621

Category: Mathematics

Page: 384

View: 5131

An introductory textbook on the differential geometry of curves and surfaces in 3-dimensional Euclidean space, presented in its simplest, most essential form. With problems and solutions. Includes 99 illustrations.

Differential Geometry

Author: Heinrich W. Guggenheimer

Publisher: Courier Corporation

ISBN: 0486157202

Category: Mathematics

Page: 400

View: 7008

This text contains an elementary introduction to continuous groups and differential invariants; an extensive treatment of groups of motions in euclidean, affine, and riemannian geometry; more. Includes exercises and 62 figures.