Using Algebraic Geometry

Author: David A. Cox,John Little,DONAL OSHEA

Publisher: Springer Science & Business Media

ISBN: 1475769113

Category: Mathematics

Page: 503

View: 4133

An illustration of the many uses of algebraic geometry, highlighting the more recent applications of Groebner bases and resultants. Along the way, the authors provide an introduction to some algebraic objects and techniques more advanced than typically encountered in a first course. The book is accessible to non-specialists and to readers with a diverse range of backgrounds, assuming readers know the material covered in standard undergraduate courses, including abstract algebra. But because the text is intended for beginning graduate students, it does not require graduate algebra, and in particular, does not assume that the reader is familiar with modules.

Commutative Algebra

With a View Toward Algebraic Geometry

Author: David Eisenbud,Professor David Eisenbud

Publisher: Springer Science & Business Media

ISBN: 9780387942698

Category: Mathematics

Page: 785

View: 1266

Commutative Algebra is best understood with knowledge of the geometric ideas that have played a great role in its formation, in short, with a view towards algebraic geometry. The author presents a comprehensive view of commutative algebra, from basics, such as localization and primary decomposition, through dimension theory, differentials, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. Many exercises illustrate and sharpen the theory and extended exercises give the reader an active part in complementing the material presented in the text. One novel feature is a chapter devoted to a quick but thorough treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Applications of the theory and even suggestions for computer algebra projects are included. This book will appeal to readers from beginners to advanced students of commutative algebra or algebraic geometry. To help beginners, the essential ideals from algebraic geometry are treated from scratch. Appendices on homological algebra, multilinear algebra and several other useful topics help to make the book relatively self- contained. Novel results and presentations are scattered throughout the text.

Algebraic Geometry

Author: Robin Hartshorne

Publisher: Springer Science & Business Media

ISBN: 1475738498

Category: Mathematics

Page: 496

View: 9047

An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.

Algebraic Geometry

A Concise Dictionary

Author: Elena Rubei

Publisher: Walter de Gruyter GmbH & Co KG

ISBN: 3110316234

Category: Mathematics

Page: 239

View: 7635

Algebraic geometry has a complicated, difficult language. This book contains a definition, several references and the statements of the main theorems (without proofs) for every of the most common words in this subject. Some terms of related subjects are included. It helps beginners that know some, but not all, basic facts of algebraic geometry to follow seminars and to read papers. The dictionary form makes it easy and quick to consult.

Elementare Algebraische Geometrie

Grundlegende Begriffe und Techniken mit zahlreichen Beispielen und Anwendungen

Author: Klaus Hulek

Publisher: Springer-Verlag

ISBN: 3322802213

Category: Mathematics

Page: 167

View: 9869

Dieses Buch gibt eine Einführung in die Algebraische Geometrie. Ziel ist es, die grundlegenden Begriffe und Techniken der algebraischen Geometrie zusammen mit einer Reihe von Beispielen darzustellen.

An Invitation to Algebraic Geometry

Author: Karen E. Smith,Lauri Kahanpää,Pekka Kekäläinen,William Traves

Publisher: Springer Science & Business Media

ISBN: 1475744978

Category: Mathematics

Page: 164

View: 7780

This is a description of the underlying principles of algebraic geometry, some of its important developments in the twentieth century, and some of the problems that occupy its practitioners today. It is intended for the working or the aspiring mathematician who is unfamiliar with algebraic geometry but wishes to gain an appreciation of its foundations and its goals with a minimum of prerequisites. Few algebraic prerequisites are presumed beyond a basic course in linear algebra.

Algebraic Geometry

A First Course

Author: Joe Harris

Publisher: Springer Science & Business Media

ISBN: 1475721897

Category: Mathematics

Page: 330

View: 9929

"This book succeeds brilliantly by concentrating on a number of core topics...and by treating them in a hugely rich and varied way. The author ensures that the reader will learn a large amount of classical material and perhaps more importantly, will also learn that there is no one approach to the subject. The essence lies in the range and interplay of possible approaches. The author is to be congratulated on a work of deep and enthusiastic scholarship." --MATHEMATICAL REVIEWS

Computational Commutative and Non-commutative Algebraic Geometry

Author: Svetlana Cojocaru,Gerhard Pfister,Victor Ufnarovski

Publisher: IOS Press

ISBN: 1586035053

Category: Mathematics

Page: 325

View: 2718

This publication gives a good insight in the interplay between commutative and non-commutative algebraic geometry. The theoretical and computational aspects are the central theme in this study. The topic is looked at from different perspectives in over 20 lecture reports. It emphasizes the current trends in Commutative and Non-Commutative Algebraic Geometry and Algebra. The contributors to this publication present the most recent and state-of-the-art progresses which reflect the topic discussed in this publication. Both researchers and graduate students will find this book a good source of information on commutative and non-commutative algebraic geometry.

An Introduction to Algebraic Geometry and Algebraic Groups

Author: Meinolf Geck

Publisher: OUP Oxford

ISBN: 0191663727

Category: Mathematics

Page: 320

View: 9392

An accessible text introducing algebraic geometries and algebraic groups at advanced undergraduate and early graduate level, this book develops the language of algebraic geometry from scratch and uses it to set up the theory of affine algebraic groups from first principles. Building on the background material from algebraic geometry and algebraic groups, the text provides an introduction to more advanced and specialised material. An example is the representation theory of finite groups of Lie type. The text covers the conjugacy of Borel subgroups and maximal tori, the theory of algebraic groups with a BN-pair, a thorough treatment of Frobenius maps on affine varieties and algebraic groups, zeta functions and Lefschetz numbers for varieties over finite fields. Experts in the field will enjoy some of the new approaches to classical results. The text uses algebraic groups as the main examples, including worked out examples, instructive exercises, as well as bibliographical and historical remarks.

Algorithmic and Quantitative Real Algebraic Geometry

DIMACS Workshop, Algorithmic and Quantitative Aspects of Real Algebraic, Geometry in Mathematics and Computer Science, March 12-16, 2001, DIMACS Center

Author: Saugata Basu,Laureano González-Vega

Publisher: American Mathematical Soc.

ISBN: 9780821871027

Category: Mathematics

Page: 219

View: 5149

Algorithmic and quantitative aspects in real algebraic geometry are becoming increasingly important areas of research because of their roles in other areas of mathematics and computer science. The papers in this volume collectively span several different areas of current research. The articles are based on talks given at the DIMACS Workshop on ''Algorithmic and Quantitative Aspects of Real Algebraic Geometry''. Topics include deciding basic algebraic properties of real semi-algebraic sets, application of quantitative results in real algebraic geometry towards investigating the computational complexity of various problems, algorithmic and quantitative questions in real enumerative geometry, new approaches towards solving decision problems in semi-algebraic geometry, as well as computing algebraic certificates, and applications of real algebraic geometry to concrete problems arising in robotics and computer graphics. The book is intended for researchers interested in computational methods in algebra.

The Geometry of Schemes

Author: David Eisenbud,Joe Harris

Publisher: Springer Science & Business Media

ISBN: 0387226397

Category: Mathematics

Page: 300

View: 4106

Grothendieck’s beautiful theory of schemes permeates modern algebraic geometry and underlies its applications to number theory, physics, and applied mathematics. This simple account of that theory emphasizes and explains the universal geometric concepts behind the definitions. In the book, concepts are illustrated with fundamental examples, and explicit calculations show how the constructions of scheme theory are carried out in practice.

Lineare Algebra

Author: Werner Greub

Publisher: Springer-Verlag

ISBN: 3642663850

Category: Mathematics

Page: 222

View: 4812

Poincarés Vermutung

die Geschichte eines mathematischen Abenteuers

Author: Donal O'Shea

Publisher: N.A

ISBN: 9783596176632


Page: 376

View: 8970

Lineare Algebra

Author: Gilbert Strang

Publisher: Springer-Verlag

ISBN: 3642556310

Category: Mathematics

Page: 656

View: 5895

Diese Einführung in die lineare Algebra bietet einen sehr anschaulichen Zugang zum Thema. Die englische Originalausgabe wurde rasch zum Standardwerk in den Anfängerkursen des Massachusetts Institute of Technology sowie in vielen anderen nordamerikanischen Universitäten. Auch hierzulande ist dieses Buch als Grundstudiumsvorlesung für alle Studenten hervorragend lesbar. Darüber hinaus gibt es neue Impulse in der Mathematikausbildung und folgt dem Trend hin zu Anwendungen und Interdisziplinarität. Inhaltlich umfasst das Werk die Grundkenntnisse und die wichtigsten Anwendungen der linearen Algebra und eignet sich hervorragend für Studierende der Ingenieurwissenschaften, Naturwissenschaften, Mathematik und Informatik, die einen modernen Zugang zum Einsatz der linearen Algebra suchen. Ganz klar liegt hierbei der Schwerpunkt auf den Anwendungen, ohne dabei die mathematische Strenge zu vernachlässigen. Im Buch wird die jeweils zugrundeliegende Theorie mit zahlreichen Beispielen aus der Elektrotechnik, der Informatik, der Physik, Biologie und den Wirtschaftswissenschaften direkt verknüpft. Zahlreiche Aufgaben mit Lösungen runden das Werk ab.

Ebene algebraische Kurven

Author: Egbert Brieskorn,Horst Knörrer

Publisher: N.A


Category: Mathematics

Page: 964

View: 2247

Vorlesungen über Algebraische Geometrie

Geometrie auf einer Kurve Riemannsche Flächen Abelsche Integrale

Author: Dr. Francesco Severi

Publisher: Springer-Verlag

ISBN: 3663157733

Category: Mathematics

Page: 408

View: 3921

Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.

Ebene algebraische Kurven

Author: Gerd Fischer

Publisher: Springer-Verlag

ISBN: 3322803112

Category: Mathematics

Page: 177

View: 5874

Neben den elementaren Dingen, wie Tangenten, Singularitäten und Wendepunkten werden auch schwierigere Begriffe wie lokale Zweige und Geschlecht behandelt. Höhepunkte sind die klassischen Formeln von Plücker und Clebsch, die Beziehungen zwischen verschiedenen globalen und lokalen Invarianten einer Kurve beschreiben.