Vector and Geometric Calculus

Author: Alan Macdonald

Publisher: Createspace Independent Pub

ISBN: 9781480132450

Category: Mathematics

Page: 198

View: 5321

This textbook for the undergraduate vector calculus course presents a unified treatment of vector and geometric calculus. It is a sequel to the text Linear and Geometric Algebra by the same author. That text is a prerequisite for this one. Linear algebra and vector calculus have provided the basic vocabulary of mathematics in dimensions greater than one for the past one hundred years. Just as geometric algebra generalizes linear algebra in powerful ways, geometric calculus generalizes vector calculus in powerful ways. Traditional vector calculus topics are covered, as they must be, since readers will encounter them in other texts and out in the world. Differential geometry is used today in many disciplines. A final chapter is devoted to it. Visit the book's web site: http: // macdonal/vagc to download the table of contents, preface, and index. This is a third printing, corrected and slightly revised. From a review of Linear and Geometric Algebra Alan Macdonald's text is an excellent resource if you are just beginning the study of geometric algebra and would like to learn or review traditional linear algebra in the process. The clarity and evenness of the writing, as well as the originality of presentation that is evident throughout this text, suggest that the author has been successful as a mathematics teacher in the undergraduate classroom. This carefully crafted text is ideal for anyone learning geometric algebra in relative isolation, which I suspect will be the case for many readers. -- Jeffrey Dunham, William R. Kenan Jr. Professor of Natural Sciences, Middlebury College

Geometry & Vector Calculus

Author: A. R. Vasishtha

Publisher: Krishna Prakashan Media

ISBN: 8182835372


Page: N.A

View: 5644

Clifford Algebra to Geometric Calculus

A Unified Language for Mathematics and Physics

Author: D. Hestenes,Garret Sobczyk

Publisher: Springer Science & Business Media

ISBN: 9400962924

Category: Science

Page: 314

View: 8154

Matrix algebra has been called "the arithmetic of higher mathematics" [Be]. We think the basis for a better arithmetic has long been available, but its versatility has hardly been appreciated, and it has not yet been integrated into the mainstream of mathematics. We refer to the system commonly called 'Clifford Algebra', though we prefer the name 'Geometric Algebm' suggested by Clifford himself. Many distinct algebraic systems have been adapted or developed to express geometric relations and describe geometric structures. Especially notable are those algebras which have been used for this purpose in physics, in particular, the system of complex numbers, the quatemions, matrix algebra, vector, tensor and spinor algebras and the algebra of differential forms. Each of these geometric algebras has some significant advantage over the others in certain applications, so no one of them provides an adequate algebraic structure for all purposes of geometry and physics. At the same time, the algebras overlap considerably, so they provide several different mathematical representations for individual geometrical or physical ideas.

Calculus in 3D: Geometry, Vectors, and Multivariate Calculus

Author: Zbigniew Nitecki

Publisher: American Mathematical Soc.

ISBN: 1470443600

Category: Calculus

Page: 405

View: 8982

Calculus in 3D is an accessible, well-written textbook for an honors course in multivariable calculus for mathematically strong first- or second-year university students. The treatment given here carefully balances theoretical rigor, the development of student facility in the procedures and algorithms, and inculcating intuition into underlying geometric principles. The focus throughout is on two or three dimensions. All of the standard multivariable material is thoroughly covered, including vector calculus treated through both vector fields and differential forms. There are rich collections of problems ranging from the routine through the theoretical to deep, challenging problems suitable for in-depth projects. Linear algebra is developed as needed. Unusual features include a rigorous formulation of cross products and determinants as oriented area, an in-depth treatment of conics harking back to the classical Greek ideas, and a more extensive than usual exploration and use of parametrized curves and surfaces. Zbigniew Nitecki is Professor of Mathematics at Tufts University and a leading authority on smooth dynamical systems. He is the author of Differentiable Dynamics, MIT Press; Differential Equations, A First Course (with M. Guterman), Saunders; Differential Equations with Linear Algebra (with M. Guterman), Saunders; and Calculus Deconstructed, AMS.

Vector Calculus

Author: Paul C. Matthews

Publisher: Springer Science & Business Media

ISBN: 9783540761808

Category: Mathematics

Page: 182

View: 4810

Vector calculus is the fundamental language of mathematical physics. It pro vides a way to describe physical quantities in three-dimensional space and the way in which these quantities vary. Many topics in the physical sciences can be analysed mathematically using the techniques of vector calculus. These top ics include fluid dynamics, solid mechanics and electromagnetism, all of which involve a description of vector and scalar quantities in three dimensions. This book assumes no previous knowledge of vectors. However, it is assumed that the reader has a knowledge of basic calculus, including differentiation, integration and partial differentiation. Some knowledge of linear algebra is also required, particularly the concepts of matrices and determinants. The book is designed to be self-contained, so that it is suitable for a pro gramme of individual study. Each of the eight chapters introduces a new topic, and to facilitate understanding of the material, frequent reference is made to physical applications. The physical nature of the subject is clarified with over sixty diagrams, which provide an important aid to the comprehension of the new concepts. Following the introduction of each new topic, worked examples are provided. It is essential that these are studied carefully, so that a full un derstanding is developed before moving ahead. Like much of mathematics, each section of the book is built on the foundations laid in the earlier sections and chapters.


Author: Klaus Jänich

Publisher: Springer-Verlag

ISBN: 366210752X

Category: Mathematics

Page: 276

View: 7690

Die Vektoranalysis handelt, in klassischer Darstellung, von Vektorfeldern, den Operatoren Gradient, Divergenz und Rotation, von Linien-, Flächen- und Volumenintegralen und von den Integralsätzen von Gauß, Stokes und Green. In moderner Fassung ist es der Cartansche Kalkül mit dem Satz von Stokes. Das vorliegende Buch vertritt grundsätzlich die moderne Herangehensweise, geht aber auch sorgfältig auf die klassische Notation und Auffassung ein. Das Buch richtet sich an Mathematik- und Physikstudenten ab dem zweiten Studienjahr, die mit den Grundbegriffen der Differential- und Integralrechnung in einer und mehreren Variablen sowie der Topologie vertraut sind. Der sehr persönliche Stil des Autors und die aus anderen Büchern bereits bekannten Lernhilfen, wie: viele Figuren, mehr als 50 kommentierte Übungsaufgaben, über 100 Tests mit Antworten machen, auch diesen Text zum Selbststudium hervorragend geeignet.

Vector Algebra and Calculus

Author: Hari Kishan

Publisher: Atlantic Publishers & Dist

ISBN: 9788126908066

Category: Calculus

Page: 430

View: 6334

The Present Book Aims At Providing A Detailed Account Of The Basic Concepts Of Vectors That Are Needed To Build A Strong Foundation For A Student Pursuing Career In Mathematics. These Concepts Include Addition And Multiplication Of Vectors By Scalars, Centroid, Vector Equations Of A Line And A Plane And Their Application In Geometry And Mechanics, Scalar And Vector Product Of Two Vectors, Differential And Integration Of Vectors, Differential Operators, Line Integrals, And Gauss S And Stoke S Theorems.It Is Primarily Designed For B.Sc And B.A. Courses, Elucidating All The Fundamental Concepts In A Manner That Leaves No Scope For Illusion Or Confusion. The Numerous High-Graded Solved Examples Provided In The Book Have Been Mainly Taken From The Authoritative Textbooks And Question Papers Of Various University And Competitive Examinations Which Will Facilitate Easy Understanding Of The Various Skills Necessary In Solving The Problems. In Addition, These Examples Will Acquaint The Readers With The Type Of Questions Usually Set At The Examinations. Furthermore, Practice Exercises Of Multiple Varieties Have Also Been Given, Believing That They Will Help In Quick Revision And In Gaining Confidence In The Understanding Of The Subject. Answers To These Questions Have Been Verified Thoroughly. It Is Hoped That A Thorough Study Of This Book Would Enable The Students Of Mathematics To Secure High Marks In The Examinations. Besides Students, The Teachers Of The Subject Would Also Find It Useful In Elucidating Concepts To The Students By Following A Number Of Possible Tracks Suggested In The Book.

Vectors in Two or Three Dimensions

Author: Ann Hirst

Publisher: Butterworth-Heinemann

ISBN: 0080572014

Category: Mathematics

Page: 144

View: 7556

Vectors in 2 or 3 Dimensions provides an introduction to vectors from their very basics. The author has approached the subject from a geometrical standpoint and although applications to mechanics will be pointed out and techniques from linear algebra employed, it is the geometric view which is emphasised throughout. Properties of vectors are initially introduced before moving on to vector algebra and transformation geometry. Vector calculus as a means of studying curves and surfaces in 3 dimensions and the concept of isometry are introduced later, providing a stepping stone to more advanced theories. * Adopts a geometric approach * Develops gradually, building from basics to the concept of isometry and vector calculus * Assumes virtually no prior knowledge * Numerous worked examples, exercises and challenge questions

Multivariable Calculus and Mathematica®

With Applications to Geometry and Physics

Author: Kevin R. Coombes,Ronald L. Lipsman,Jonathan M. Rosenberg

Publisher: Springer Science & Business Media

ISBN: 1461216982

Category: Mathematics

Page: 283

View: 8862

Aiming to "modernise" the course through the integration of Mathematica, this publication introduces students to its multivariable uses, instructs them on its use as a tool in simplifying calculations, and presents introductions to geometry, mathematical physics, and kinematics. The authors make it clear that Mathematica is not algorithms, but at the same time, they clearly see the ways in which Mathematica can make things cleaner, clearer and simpler. The sets of problems give students an opportunity to practice their newly learned skills, covering simple calculations, simple plots, a review of one-variable calculus using Mathematica for symbolic differentiation, integration and numerical integration, and also cover the practice of incorporating text and headings into a Mathematica notebook. The accompanying diskette contains both Mathematica 2.2 and 3.0 version notebooks, as well as sample examination problems for students, which can be used with any standard multivariable calculus textbook. It is assumed that students will also have access to an introductory primer for Mathematica.

Differentialgeometrie von Kurven und Flächen

Author: Manfredo P. do Carmo

Publisher: Springer-Verlag

ISBN: 3322850722

Category: Technology & Engineering

Page: 263

View: 3196

Inhalt: Kurven - Reguläre Flächen - Die Geometrie der Gauß-Abbildung - Die innere Geometrie von Flächen - Anhang

Multivariable Calculus and Differential Geometry

Author: Gerard Walschap

Publisher: Walter de Gruyter GmbH & Co KG

ISBN: 3110369540

Category: Mathematics

Page: 365

View: 6989

This text is a modern in-depth study of the subject that includes all the material needed from linear algebra. It then goes on to investigate topics in differential geometry, such as manifolds in Euclidean space, curvature, and the generalization of the fundamental theorem of calculus known as Stokes' theorem.

Vector calculus

Author: Thomas H. Barr

Publisher: Pearson College Div


Category: Mathematics

Page: 458

View: 9056

This brief book presents an accessible treatment of multivariable calculus with an early emphasis on linear algebra as a tool. Its organization draws strong analogies with the basic ideas of elementary calculus (derivative, integral, and fundamental theorem). Traditional in approach, it is written with an assumption that the student reader may have computing facilities for two- and three-dimensional graphics, and for doing symbolic algebra. Chapter topics include coordinate and vector geometry, differentiation, applications of differentiation, integration, and fundamental theorems. For those with knowledge of introductory calculus in a wide range of disciplines including—but not limited to—mathematics, engineering, physics, chemistry, and economics.

Differential Forms and Connections

Author: R. W. R. Darling

Publisher: Cambridge University Press

ISBN: 1316583686

Category: Mathematics

Page: N.A

View: 1147

This 1994 book introduces the tools of modern differential geometry, exterior calculus, manifolds, vector bundles and connections, to advanced undergraduate and beginning graduate students in mathematics, physics and engineering. The book covers both classical surface theory and the modern theory of connections and curvature, and includes a chapter on applications to theoretical physics. The only prerequisites are multivariate calculus and linear algebra; no knowledge of topology is assumed. The powerful and concise calculus of differential forms is used throughout. Through the use of numerous concrete examples, the author develops computational skills in the familiar Euclidean context before exposing the reader to the more abstract setting of manifolds. There are nearly 200 exercises, making the book ideal for both classroom use and self-study.


Author: Peter C. Kendall

Publisher: Springer-Verlag

ISBN: 332294056X

Category: Technology & Engineering

Page: 260

View: 8658

Bücher über Vektoranalysis beginnen üblicherweise mit der Definition eines Vektors als Äquivalenzklasse gerichteter Strecken - oder weniger genau, als Größe, die sowohl eine Richtung als auch eine Länge hat. Diese Einführung ist wegen ihres einfach erscheinenden Konzeptes einprägsam, aber sie führt zu logischen Schwierigkeiten, die nur durch sorgfältiges Vorgehen gelöst werden können. Folgerichtig haben Studenten oft Probleme, die Anfänge der Vektoranalysis vollständig zu verstehen und verlieren schnell an Vertrauen. Eine andere Unzulänglichkeit ist es, daß bei der weiteren Entwicklung häufig auf die geometrische Anschauung zurückgegriffen wird und viel Sorgfalt nötig ist, um analytische Zusammenhänge nicht zu verwischen oder zu übersehen. So wird z. B. selten klar, daß bei der Definition des Gradienten eines Skalarfeldes, der Divergenz oder der Rotation eines Vektorfeldes vorausgesetzt werden muß, daß die Felder stetig differenzierbar sind und daß die bloße Existenz der partiellen Ableitungen erster Ordnung unzureichend ist. Der Einstieg in die Vektoranalysis, der in diesem Band gewählt wurde, basiert auf der Definition eines Vektors mit Hilfe rechtwinkliger kartesischer Komponenten, die bei einer Änderung der Achsen vorgegebene Transformationsgesetze erfüllen. Dieser Einstieg wurde seit 10 Jahren erfolgreich in Anfängervorlesungen für Mathematiker und andere Naturwissenschaftler benutzt und bietet einige Vorteile. Regeln zur Addition und Subtraktion von Vektoren, zur Berechnung des Skalar- und Vektor produktes und zum Differenzieren sind schnell greifbar und die Möglichkeit, Vektoren so einfach zu handhaben, gibt den Studenten unmittelbares Zutrauen. Der spätere Einstieg in die Theorie der Vektorfelder erscheint natürlich, da Gradient, Divergenz und Rotation in ihrer Koordinatenform definiert sind.

Vector Analysis Versus Vector Calculus

Author: Antonio Galbis,Manuel Maestre

Publisher: Springer Science & Business Media

ISBN: 1461422000

Category: Mathematics

Page: 375

View: 5061

The aim of this book is to facilitate the use of Stokes' Theorem in applications. The text takes a differential geometric point of view and provides for the student a bridge between pure and applied mathematics by carefully building a formal rigorous development of the topic and following this through to concrete applications in two and three variables. Key topics include vectors and vector fields, line integrals, regular k-surfaces, flux of a vector field, orientation of a surface, differential forms, Stokes' theorem, and divergence theorem. This book is intended for upper undergraduate students who have completed a standard introduction to differential and integral calculus for functions of several variables. The book can also be useful to engineering and physics students who know how to handle the theorems of Green, Stokes and Gauss, but would like to explore the topic further.