Water Wave Mechanics for Engineers and Scientists

Author: Robert G Dean,Robert A Dalrymple

Publisher: World Scientific Publishing Company

ISBN: 9814365696

Category: Technology & Engineering

Page: 368

View: 8574

This book is intended as an introduction to classical water wave theory for the college senior or first year graduate student. The material is self-contained; almost all mathematical and engineering concepts are presented or derived in the text, thus making the book accessible to practicing engineers as well. The book commences with a review of fluid mechanics and basic vector concepts. The formulation and solution of the governing boundary value problem for small amplitude waves are developed and the kinematic and pressure fields for short and long waves are explored. The transformation of waves due to variations in depth and their interactions with structures are derived. Wavemaker theories and the statistics of ocean waves are reviewed. The application of the water particle motions and pressure fields are applied to the calculation of wave forces on small and large objects. Extension of the linear theory results to several nonlinear wave properties is presented. Each chapter concludes with a set of homework problems exercising and sometimes extending the material presented in the chapter. An appendix provides a description of nine experiments which can be performed, with little additional equipment, in most wave tank facilities.

Physics of Waves

Author: William C. Elmore,Mark A. Heald

Publisher: Courier Corporation

ISBN: 0486140652

Category: Science

Page: 512

View: 2500

Ideal as a classroom text or for individual study, this unique one-volume overview of classical wave theory covers wave phenomena of acoustics, optics, electromagnetic radiations, and more.

Coastal and Estuarine Processes

Author: Peter Nielsen

Publisher: World Scientific Publishing Company

ISBN: 981310113X

Category: Science

Page: 360

View: 5949

This book covers water waves, surf zone hydrodynamics, tides in oceans and estuaries, storm surges, estuarine mixing, basic sediment transport, coastal morphodynamics and coastal groundwater dynamics. It is an introductory treatment, suitable for a first course in coastal and estuarine processes for earth scientists or engineers. Yet, there are substantial amounts of new material that are included, such as the explicit, analytical treatment of transient, forced long waves. Inclusion of this material will in turn strongly enhance the introductory treatment of tsunami, storm surges and surf beat. The treatment of sine wave theory emphasizes expressions which are explicit in the water depth h (using koh instead of kh) so that they can easily be differentiated or integrated with respect to h. This is a major pedagogical advantage because of the enhanced transparency. The treatment of turbulent mixing includes finite mixing length effects which provide an explanation for differential diffusion of different sediment sizes in suspension. The effects of acceleration skewness and boundary layer streaming are also included in the basic sediment transport models. The inclusion of beach groundwater dynamics — including the mechanisms by which waves as well as tides drive groundwater motion — provides a link between the previously unconnected fields of coastal hydraulics and regional groundwater modeling. Serving as a good reference book, it is fully indexed and comprehensively cross referenced. Abundant references to more detailed texts are also provided.

Introduction to Nearshore Hydrodynamics

Author: Ib A. Svendsen

Publisher: World Scientific

ISBN: 9812561420

Category: Technology & Engineering

Page: 722

View: 6848

This book is intended as an introductory textbook for graduate students and as a reference book for engineers and scientists working in the field of coastal engineering. As such it gives a description of the theories for wave and nearshore hydrodynamics. It is meant to de-mystify the topics and hence starts at a fairly basic level. It requires knowledge of fluid mechanics equivalent to a first year graduate level. At the end of each topic, an attempt is made to give an overview of the present stage of the scientific development in that area with numerous references for further studies.

Computational Wave Dynamics

Author: Hitoshi Gotoh,Akio Okayasu,Yasunori Watanabe

Publisher: World Scientific Publishing Company

ISBN: 9814449725

Category: Technology & Engineering

Page: 252

View: 8745

This book provides a comprehensive description of the latest theory-supported numerical technologies, as well as scientific and engineering applications for water surface waves. Its contents are crafted to cater to a step-by-step learning of computational wave dynamics and ocean wave modeling. It provides a comprehensive description from underlying theories of free-surface flows, to practical computational applications for coastal and ocean engineering on the basis of computational fluid dynamics (CFD). The text may be used as a textbook for advanced undergraduate students and graduate students to understand the theoretical background of wave computations, and the recent progress of computational techniques for free-surface and interfacial flows, such as Volume of Fluid (VOF), Constrained Interpolation Profile (CIP), Lagrangian Particle (SPH, MPS), Distinct Element (DEM) and Euler-Lagrange Hybrid Methods. It is also suitable for researchers and engineers who wish to apply CFD techniques to ocean modeling and practical coastal problems involving sediment transport, wave-structure interaction and surf zone flows.

Waves in Oceanic and Coastal Waters

Author: Leo H. Holthuijsen

Publisher: Cambridge University Press

ISBN: 1139462520

Category: Science

Page: N.A

View: 1247

Waves in Oceanic and Coastal Waters describes the observation, analysis and prediction of wind-generated waves in the open ocean, in shelf seas, and in coastal regions with islands, channels, tidal flats and inlets, estuaries, fjords and lagoons. Most of this richly illustrated book is devoted to the physical aspects of waves. After introducing observation techniques for waves, both at sea and from space, the book defines the parameters that characterise waves. Using basic statistical and physical concepts, the author discusses the prediction of waves in oceanic and coastal waters, first in terms of generalised observations, and then in terms of the more theoretical framework of the spectral energy balance. He gives the results of established theories and also the direction in which research is developing. The book ends with a description of SWAN (Simulating Waves Nearshore), the preferred computer model of the engineering community for predicting waves in coastal waters.

Mechanics of Coastal Sediment Transport

Author: J?rgen Freds?e,Rolf Deigaard

Publisher: World Scientific

ISBN: 9789810208400

Category: Science

Page: 369

View: 3988

This book treats the subject of sediment transport in the marine environment, covering transport of non-cohesive sediment by waves and current in- and outside the surf zone. It can be read independently, but a background in hydraulics and basic wave mechanics is required. It is intended for M.Sc. and Ph.D. students. The primary aim of the book is to describe the physical processes of sediment transport and how to represent them in mathematical models. It does not present a large number of different formulae for the sediment transport rates under various conditions. The book can be divided in two main parts; in the first, the relevant hydrodynamic theory is described; in the second, sediment transport and morphological development are treated. The hydrodynamic part contains a review of elementary theory for water waves, chapters on the turbulent wave boundary layer and the turbulent interaction between waves and currents, and finally, surf zone hydrodynamics and wave driven currents. The part on sediment transport introduces the basic concepts (critical bed shear stress, bed load, suspended load and sheet layer, near-bed concentration, effect of sloping bed); it treats suspended sediment in waves and current and in the surf zone, and current and wave-generated bed forms. Finally, the modelling of cross-shore and long-shore sediment transport is described together with the development, of coastal profiles and coastlines.

Coastal Processes with Engineering Applications

Author: Robert G. Dean,Robert A. Dalrymple

Publisher: Cambridge University Press

ISBN: 9780521602754

Category: Science

Page: 475

View: 2698

Text on coastal engineering and oceanography covering theory and applications intended to mitigate shoreline erosion.

Nonlinear Waves and Offshore Structures

Author: Cheung Hun Kim

Publisher: World Scientific

ISBN: 9810248849

Category: Technology & Engineering

Page: 516

View: 5689

The responses of offshore structures are significantly affected by steep nonlinear waves, currents and wind, leading to phenomena such as springing and ringing of TLPs, slow drift yaw motion of FPSOs and large oscillations of Spar platforms due to vortex shedding. Research has brought about significant progress in this field over the past few decades and introduced us to increasingly involved concepts and their diverse applicability. Thus, an in-depth understanding of steep nonlinear waves and their effects on the responses of offshore structures is essential for safe and effective designs.This book deals with analyses of nonlinear problems encountered in the design of offshore structures, as well as those that are of immediate practical interest to ocean engineers and designers. It presents conclusions drawn from recent research pertinent to nonlinear waves and their effects on the responses of offshore structures. Theories, observations and analyses of laboratory and field experiments are expounded such that the nonlinear effects can be clearly visualized.

Coastal Bottom Boundary Layers and Sediment Transport

Author: Peter Nielsen

Publisher: World Scientific

ISBN: 9789810204730

Category: Science

Page: 324

View: 6484

This book is intended as a useful handbook for professionals and researchers in the areas of Physical Oceanography, Marine Geology, Coastal Geomorphology and Coastal Engineering and as a text for graduate students in these fields. With its emphasis on boundary layer flow and basic sediment transport modelling, it is meant to help fill the gap between general hydrodynamic texts and descriptive texts on marine and coastal sedimentary processes. The book commences with a review of coastal bottom boundary layer flows including the boundary layer interaction between waves and steady currents. The concept of eddy viscosity for these flows is discussed in depth because of its relation to sediment diffusivity. The quasi-steady processes of sediment transport over flat beds are discussed. Small scale coastal bedforms and the corresponding hydraulic roughness are described. The motion of suspended sand particles is studied in detail with emphasis on the possible suspension maintaining mechanisms in coastal flows. Sediment pickup functions are provided for unsteady flows. A new combined convection-diffusion model is provided for suspended sediment distributions. Different methods of sediment transport model building are presented together with some classical models.

Introduction to Coastal Dynamics and Shoreline Protection

Author: G. Benassai

Publisher: WIT Press

ISBN: 1845640543

Category: Technology & Engineering

Page: 331

View: 1281

"Provides an integrated approach to coastal dynamics and shoreline protection, aided by the use of specific case studies" -- Back cover.

Basic Wave Mechanics

For Coastal and Ocean Engineers

Author: Robert M. Sorensen

Publisher: John Wiley & Sons

ISBN: 9780471551652

Category: Science

Page: 284

View: 3752

Intended for coastal engineers and marine scientists who desire to develop a fundamental physical understanding of ocean waves and be able to apply this knowledge to ocean and coastal analysis and design. Provides an introduction to the physical processes of ocean wave mechanics, an understanding of the basic techniques for wave analysis, techniques for practical calculation and prediction of waves and applied wave forecasting.

Ocean Surface Waves

Their Physics and Prediction

Author: Stanislaw R. Massel

Publisher: World Scientific

ISBN: 9789810221096

Category: Science

Page: 491

View: 3167

This book is intended as a handbook for professionals and researchers in the areas of Physical Oceanography, Ocean and Coastal Engineering and as a text for graduate students in these fields. It presents a comprehensive study on surface ocean waves induced by wind, including basic mathematical principles, physical description of the observed phenomena, practical forecasting techniques of various wave parameters and applications in ocean and coastal engineering, all from the probabilistic and spectral points of view. The book commences with a description of mechanisms of surface wave generation by wind and its modern modeling techniques. The stochastic and probabilistic terminology is introduced and the basic statistical and spectral properties of ocean waves are developed and discussed in detail. The bulk of material deals with the prediction techniques for waves in deep and coastal waters for simple and complex ocean basins and complex bathymetry. The various prediction methods, currently used in oceanography and ocean engineering, are described and the examples of practical calculations illustrate the basic text. An appendix provides a description of the modern methods of wave measurement, including the remote sensing techniques. Also the wave simulation methods and random data analysis techniques are discussed. In the book a lot of discoveries of the Russian and East European scientists, largely unknown in the Western literature due to the language barrier, are referred to.

Ocean Waves

The Stochastic Approach

Author: Michel K. Ochi

Publisher: Cambridge University Press

ISBN: 9780521017671

Category: Science

Page: 319

View: 9677

Describes the stochastic method for ocean wave analysis - vital information for design and operation of ships.

Theory and Applications of Ocean Surface Waves: Nonlinear aspects

Author: Chiang C. Mei,Michael Stiassnie,Dick K.-P. Yue

Publisher: World Scientific

ISBN: 9812561587

Category: Coastal engineering

Page: 1071

View: 846

This book is an expanded version of The Applied Dynamics of Ocean Surface Waves. It presents theoretical topics on ocean wave dynamics, including basic principles and applications in coastal and offshore engineering as well as coastal oceanography. Advanced analytical and numerical techniques are applied, such as singular perturbations. In this expanded edition, two chapters on recent developments have been added: one is on multiple scattering by periodic or random bathymetry, and the other is on Zakharov's theory of broad spectrum wave fields. New sections include topics on infragravity waves, upstream solitons, Venice storm gates, etc. In addition, there are many new exercises. Theory and Applications of Ocean Surface Waves will be invaluable for graduate students and researchers in coastal and ocean engineering, geophysical fluid dynamicists interested in water waves, and theoretical scientists and applied mathematicians wishing to develop new techniques for challenging problems or to apply techniques existing elsewhere.

Coastal Processes

Concepts in Coastal Engineering and Their Applications to Multifarious Environments

Author: Tomoya Shibayama

Publisher: World Scientific

ISBN: 9812813950

Category: Technology & Engineering

Page: 215

View: 6502

Features concepts in coastal engineering and their application to coastal processes and disaster prevention works. This title describes basic concepts of coastal engineering, dealing mainly with wave-induced physical problems. It consists of the author's results of 30 years' scientific research on the progress of coastal sediment transport study.

Water Waves

The Mathematical Theory with Applications

Author: J. J. Stoker

Publisher: John Wiley & Sons

ISBN: 1118031350

Category: Mathematics

Page: 600

View: 9708

Offers an integrated account of the mathematical hypothesis of wave motion in liquids with a free surface, subjected to gravitational and other forces. Uses both potential and linear wave equation theories, together with applications such as the Laplace and Fourier transform methods, conformal mapping and complex variable techniques in general or integral equations, methods employing a Green's function. Coverage includes fundamental hydrodynamics, waves on sloping beaches, problems involving waves in shallow water, the motion of ships and much more.

Marine Hydrodynamics

Author: J. N. Newman,John Grue

Publisher: MIT Press

ISBN: 0262344998

Category: Technology & Engineering

Page: 448

View: 4959

The applications of hydrodynamics to naval architecture and marine engineering expanded dramatically in the 1960s and 1970s. This classic textbook, originally published in 1977, filled the need for a single volume on the applications of hydrodynamics to marine problems. The book is solidly based on fundamentals, but it also guides the student to an understanding of engineering applications through its consideration of realistic configurations. The book takes a balanced approach between theory and empirics, providing the necessary theoretical background for an intelligent evaluation and application of empirical procedures. It also serves as an introduction to more specialized research methods. It unifies the seemingly diverse problems of marine hydrodynamics by examining them not as separate problems but as related applications of the general field of hydrodynamics. The book evolved from a first-year graduate course in MIT's Department of Ocean Engineering. A knowledge of advanced calculus is assumed. Students will find a previous introductory course in fluid dynamics helpful, but the book presents the necessary fundamentals in a self-contained manner. The 40th anniversary of this pioneering book offers a foreword by John Grue. Contents Model Testing • The Motion of a Viscous Fluid • The Motion of an Ideal Fluid • Lifting Surfaces • Waves and Wave Effects • Hydrodynamics of Slender Bodies