Combinatorial Algebraic Topology

Author: Dimitry Kozlov

Publisher: Springer Science & Business Media

ISBN: 9783540730514

Category: Mathematics

Page: 390

View: 2107


This volume is the first comprehensive treatment of combinatorial algebraic topology in book form. The first part of the book constitutes a swift walk through the main tools of algebraic topology. Readers - graduate students and working mathematicians alike - will probably find particularly useful the second part, which contains an in-depth discussion of the major research techniques of combinatorial algebraic topology. Although applications are sprinkled throughout the second part, they are principal focus of the third part, which is entirely devoted to developing the topological structure theory for graph homomorphisms.

Thirty Essays on Geometric Graph Theory

Author: János Pach

Publisher: Springer Science & Business Media

ISBN: 1461401100

Category: Mathematics

Page: 610

View: 4628


In many applications of graph theory, graphs are regarded as geometric objects drawn in the plane or in some other surface. The traditional methods of "abstract" graph theory are often incapable of providing satisfactory answers to questions arising in such applications. In the past couple of decades, many powerful new combinatorial and topological techniques have been developed to tackle these problems. Today geometric graph theory is a burgeoning field with many striking results and appealing open questions. This contributed volume contains thirty original survey and research papers on important recent developments in geometric graph theory. The contributions were thoroughly reviewed and written by excellent researchers in this field.

Morse Theory

Smooth and Discrete

Author: Kevin P Knudson

Publisher: World Scientific Publishing Company

ISBN: 9814630985

Category: Mathematics

Page: 196

View: 4136


Morse Theory: Smooth and Discrete serves as an introduction to classical smooth Morse theory and to Forman's discrete Morse theory, highlighting the parallels between the two subjects. This is the first time both smooth and discrete Morse theory have been treated in a single volume. This makes the book a valuable resource for students and professionals working in topology and discrete mathematics. With a strong focus on examples, the text is suitable for advanced undergraduates or beginning graduate students.

Topology for Computing

Author: Afra J. Zomorodian

Publisher: Cambridge University Press

ISBN: 9781139442633

Category: Computers

Page: N.A

View: 5141


The emerging field of computational topology utilizes theory from topology and the power of computing to solve problems in diverse fields. Recent applications include computer graphics, computer-aided design (CAD), and structural biology, all of which involve understanding the intrinsic shape of some real or abstract space. A primary goal of this book is to present basic concepts from topology and Morse theory to enable a non-specialist to grasp and participate in current research in computational topology. The author gives a self-contained presentation of the mathematical concepts from a computer scientist's point of view, combining point set topology, algebraic topology, group theory, differential manifolds, and Morse theory. He also presents some recent advances in the area, including topological persistence and hierarchical Morse complexes. Throughout, the focus is on computational challenges and on presenting algorithms and data structures when appropriate.

Advances in Applied and Computational Topology

American Mathematical Society Short Course on Computational Topology, January 4-5, 2011, New Orleans, Louisiana

Author: American Mathematical Society. Short Course on Computational Topology

Publisher: American Mathematical Soc.

ISBN: 0821853279

Category: Mathematics

Page: 232

View: 7570


What is the shape of data? How do we describe flows? Can we count by integrating? How do we plan with uncertainty? What is the most compact representation? These questions, while unrelated, become similar when recast into a computational setting. Our input is a set of finite, discrete, noisy samples that describes an abstract space. Our goal is to compute qualitative features of the unknown space. It turns out that topology is sufficiently tolerant to provide us with robust tools. This volume is based on lectures delivered at the 2011 AMS Short Course on Computational Topology, held January 4-5, 2011 in New Orleans, Louisiana. The aim of the volume is to provide a broad introduction to recent techniques from applied and computational topology. Afra Zomorodian focuses on topological data analysis via efficient construction of combinatorial structures and recent theories of persistence. Marian Mrozek analyzes asymptotic behavior of dynamical systems via efficient computation of cubical homology. Justin Curry, Robert Ghrist, and Michael Robinson present Euler Calculus, an integral calculus based on the Euler characteristic, and apply it to sensor and network data aggregation. Michael Erdmann explores the relationship of topology, planning, and probability with the strategy complex. Jeff Erickson surveys algorithms and hardness results for topological optimization problems.

Distributed Computing Through Combinatorial Topology

Author: Maurice Herlihy,Dmitry Kozlov,Sergio Rajsbaum

Publisher: Newnes

ISBN: 0124047289

Category: Computers

Page: 336

View: 8066


Distributed Computing Through Combinatorial Topology describes techniques for analyzing distributed algorithms based on award winning combinatorial topology research. The authors present a solid theoretical foundation relevant to many real systems reliant on parallelism with unpredictable delays, such as multicore microprocessors, wireless networks, distributed systems, and Internet protocols. Today, a new student or researcher must assemble a collection of scattered conference publications, which are typically terse and commonly use different notations and terminologies. This book provides a self-contained explanation of the mathematics to readers with computer science backgrounds, as well as explaining computer science concepts to readers with backgrounds in applied mathematics. The first section presents mathematical notions and models, including message passing and shared-memory systems, failures, and timing models. The next section presents core concepts in two chapters each: first, proving a simple result that lends itself to examples and pictures that will build up readers' intuition; then generalizing the concept to prove a more sophisticated result. The overall result weaves together and develops the basic concepts of the field, presenting them in a gradual and intuitively appealing way. The book's final section discusses advanced topics typically found in a graduate-level course for those who wish to explore further. Named a 2013 Notable Computer Book for Computing Methodologies by Computing Reviews Gathers knowledge otherwise spread across research and conference papers using consistent notations and a standard approach to facilitate understanding Presents unique insights applicable to multiple computing fields, including multicore microprocessors, wireless networks, distributed systems, and Internet protocols Synthesizes and distills material into a simple, unified presentation with examples, illustrations, and exercises

Algorithms in Real Algebraic Geometry

Author: Saugata Basu,Richard Pollack,Marie-Françoise Roy

Publisher: Springer Science & Business Media

ISBN: 9783540009733

Category: Mathematics

Page: 602

View: 1268


This is the first graduate textbook on the algorithmic aspects of real algebraic geometry. The main ideas and techniques presented form a coherent and rich body of knowledge. Mathematicians will find relevant information about the algorithmic aspects.

Combinatorial Methods in Topology and Algebraic Geometry

Author: John R. Harper,Richard Mandelbaum

Publisher: American Mathematical Soc.

ISBN: 9780821850398

Category: Mathematics

Page: 349

View: 1171


This collection marks the recent resurgence of interest in combinatorial methods, resulting from their deep and diverse applications both in topology and algebraic geometry. Nearly thirty mathematicians met at the University of Rochester in 1982 to survey several of the areas where combinatorial methods are proving especially fruitful: topology and combinatorial group theory, knot theory, 3-manifolds, homotopy theory and infinite dimensional topology, and four manifolds and algebraic surfaces. This material is accessible to advanced graduate students with a general course in algebraic topology along with some work in combinatorial group theory and geometric topology, as well as to established mathematicians with interests in these areas.For both student and professional mathematicians, the book provides practical suggestions for research directions still to be explored, as well as the aesthetic pleasures of seeing the interplay between algebra and topology which is characteristic of this field. In several areas the book contains the first general exposition published on the subject. In topology, for example, the editors have included M. Cohen, W. Metzler and K. Sauerman's article on 'Collapses of $K\times I$ and group presentations' and Metzler's 'On the Andrews-Curtis-Conjecture and related problems'. In addition, J. M. Montesino has provided summary articles on both 3 and 4-manifolds.